

Wireless Connections

- WiFi: 802.11 wireless LANs
 Wireless Hotspots
- Cellular network: 4G and 5G
- Mobility Management

Solution to Challenge #1

- Use stronger amplifier (expensive hardware, more energy use)
- Use different encoding techniques (software & hardware)

Challenge #2: Multipath Propagation

Solution to Challenge #2

- Rake receivers
 - Use multiple receiver units with increasing delay

Challenge #3: Interference

Solution to Challenge #3

• Use different frequency

Wave Physics Refresher

waveSpeed = waveLength × frequency

- Wave speed is affected only by the medium in which the wave travels
 - speed of sound in air: 343 m/sec
 - speed of sound in water: 1500 m/sec
- Wave frequency is affected by the source of its oscillations
 - When waves travel across different medium, wavelength and speed changes
 - Some of the wave energy may be reflected/conferted/("absorbed"
- Wave energy is proportional to amplitude squared
- Wave energy dissipates
 - over distance (inversely proportional to distance squared)
 - over denser medium

Communication Modes in Wireless Network

- In Wireless Infrastructure Mode ⇒ like "Client-Server"
 - Wireless nodes do not talk to each other, they only communicate with the base station
 - Similar concept to "star topology"
- In Adhoc Network Mode ⇒ like "Peer-to-Peer"
 - No base stations
 - Wireless nodes talk to each other (within radius of coverage)
 - Examples:
 - BlueTooth: your laptop with (mouse | keyboard | headphone | earbud | ...)
 - File transfer using AirDrop in MacOS
 - Laptop HotSpot connection to a smartphone

Taxonomy

	Single Hop	Multiple Hop
Infrastructure	Nodes connect to base station which connects to the Internet	Nodes may have to relay through several wireless nodes to connect to the Internet
Ad Hoc	No base station ⇒ No connection to larger Internet	No base station \Rightarrow No connection to larger Internet. May have to relay to reach other nodes

CDMA vs. (TDMA | FDMA)

	CDMA	FDMA/TDMA
Collision Free	Yes	Yes
Link Utilization	Nodes can use 100% link capacity	Nodes can use 1/N of link capacity

Simultaneous Transmission in Different "Languages"

- The audio recording contains the same message simultaneously spoken in three languages (English, German, Spanish)
- To English speakers: the message in German and Spanish are gibberish
 Likewise for native speakers in German or Spanish
- "LDMA": Language Division Multiple Access
 Send the message using words which make sense only for a particular recipient
- CDMA: Code Division Multiple Access
 - Encode the message using a code which is *mathematically* make sense only for a particular recipient, but "gibberish"/meaningless for others
 - Concepts from orthogonal vectors

Hadamard/Walsh Matrix

- Is a matrix of size 1x1, 2x2, 4x4, 8x8, ..., 2^kx2^k
- The entries are either –1 or +1
- Constructed recursively as follows:

$$H_1 = \left[egin{array}{cc} 1 \ \end{array}
ight] \qquad H_{2n} = \left[egin{array}{cc} H_n & H_n \ H_n & -H_n \end{array}
ight]$$

+ +

$$H_{2} = \begin{bmatrix} + & + \\ + & - \end{bmatrix} H_{4} = \begin{bmatrix} + & + & + & + \\ + & - & + & - \\ + & + & - & + \\ + & - & - & + \end{bmatrix}$$

+ + +

+

CDMA Data Encoding

- Each sender/recipient must agree on a common N-bit chipping code (C)
 - \circ ~ Taken from one of the rows in the Walsh/Hadamard matrix
- Bit encoding
 - Numeric value -1 represents binary digit 0
 - Numeric value +1 represents binary digit 1
- Each bit of data is encoded using a chipping ("spreading") code (C)
 - Each bit of data is spread out into N-bit C
 - Bit value 1 is encoded as C
 - Blt value 0 is encoded as -C
 - Side effect: the frequency of the transmitted/encoded signal is N times higher than the original data)
 - Chipping rate is higher than data rate (or viewed from the other perspective: data rate is lower the the signal transmission rate)

Mathematical Magic: Orthogonal Vectors

Sender 1 Message $a_0a_1a_2...a_n$ Sender 1 Code : C_1 Sender 2 Message $b_0b_1b_2...b_n$ Sender 2 Code : C_2 $S_1 = (a_0C_1, a_1C_1, a_2C_1, ..., a_nC_1)$ $S_2 = (b_0C_2, b_1C_2, b_2C_2, ..., b_nC_2)$ Combined signal $S_1 + S_2 = (a_0C_1 + b_0C_2, a_1C_1 + b_1C_2, ..., a_nC_1 + b_nC_2)$ Decoded using C_1 $(S_1 + S_2) \cdot C_1 = (a_0C_1 + b_0C_2, a_1C_1 + b_1C_2, ..., a_nC_1 + b_nC_2) \cdot C_1$ $= (a_0\underbrace{C_1 \cdot C_1}_{N} + b_0\underbrace{C_2 \cdot C_1}_{0}, a_1C_1 \cdot C_1 + b_1C_2 \cdot C_1, ..., a_nC_1 \cdot C_1 + b_nC_2 \cdot C_1)$ $= (a_0N, a_1N, ..., a_nN)$ $= (a_0, a_1, ..., a_n)N$

Actual CDMA Implementation

- Use longer code bit
 - 4-bit in the example can only accommodate 16 different senders (receivers)
 - More robust to out-of-phase simultaneous transmissions
 - With 4-bit code, 1-bit shift amounts to 90-degree out of phase
 - With 128-bit code, 1-bit shift amounts only to less than 3-degree out of phase
- Our illustration assumes signal strengths from various users are the same
- The orthogonality principle requires synchronous transmission by all devices. In reality, it is hard to coordinate timing precisely
 - Use asynchronous CDMA, where *codes are not fully orthogonal*, but *almost orthogonal*
 - Inner product of two N-bit user codes is NOT zero but very close to zero

CDMA Implementations

Standard	Year	Chipping Code	Where Used?
IS-95 ("CDMA One")	1993 (Qualcomm)	64-bit Walsh code	2G Cellular
CDMA 2000	2000	multiple bit lengths (to accommodate different data rates)	2.5G and 3G

Wifi: IEEE 802.11

Standard	Year	Max Data Rate	Range	Frequency
802.11b	1999	11 Mbps	20 m	2.4 GHz
802.11 g	2003	54 Mbps	30 m	
802.11 n	2009	600 Mbps	70	2.4GHz, 5 GHz
802.11 ac (WiFi 5)	2013	3.47 Gbps	7011	5 GHz
802.11 af	2014	35-560 Mbps	1 1/100	54-790 MHz
802.11 ah	2017	347 Mbps	I KM	900 MHz
802.11 ax (WiFi 6)	2020	14 Gbps	70m	2.4GHz, 5GHz

Connecting to WiFi: Scan-Associate

- Access Points periodically send beacon frames containing
 - SSID = Service Set Identifier (may be shared across several APs)
 - MAC address (unique address per AP)
- Passive Scanning (requires less energy use)
 - A wireless device listens for incoming beacon frames and decide which one to connect/associate to
- Active Scanning (requires more energy use)
 - A wireless initiate a broadcast (request frame broadcast)
 - Then listen for incoming beacon frames
- Authentication (in Chapter 8)
- Configuration: DHCP to obtain IP address

Common Architecture

WiFi CSMA with Collision Avoidance

- On wireless connections, the strength of received signal is typically very small ⇒ more expensive hardware needed to detect collisions
- CSMA/CA works with link-layer ACKs
 - Upon receiving a non-corrupted frame (no collision), the receiving device waits from a short period of time (Short Inter-Frame Spacing) and then sends ACK
 - \circ ~ If after a timeout period, the sending node does not receive ACK, it retransmits
 - \circ $\:$ If after K attempts of retransmissions, no ACKs received, it will stop trying

CSMA/CD vs. CSMA/CA

	CSMA/CD	CSMA/CA
Send packet when channel is idle	Immediate	After DIFS delay
When channel is busy	Continue to listen	Binary Exponential Backoff Wait. Begin countdown after
What if collide?	Stop Transmitting	Not detected. Hence, continue transmitting
Wait for ACKs	No	Yes
Where	Wired connections	Wireless connections

CSMA/CA: Sending Data When Link is Busy

CSMA/CA + Request To Send + Clear To Send

Pilot: "Request Permission to land"

Tower: "Clear to land"

802	802.11 Frame Format						
fra	m o						
con	trol	duration	MAC addr 1 (6)	MAC addr 2 (6)	MAC addr 3 (6)		
			ACK seq	MAC addr 4 (6)	payload (upto 2312 by	tes) CRC (4)	
				34 - 23	348 bytes		

IEEE 802.11 Frame Format

Four address fields, three are important for "infrastructure mode" operations

- MAC address #1 of **wireless** sender node or AP
- MAC address #2 of **wireless** recipient node or AP
- MAC address #3 of the router (**wired**) to which AP is attached (*subnet gateway addr*)
- MAC address #4 used only in ad hoc mode

The wireless frame eventually has to go through a wired connection!!!

WiFi Handover Across Access Points (same Subnet)

Cellular Technologies

- AMPS = Advanced Mobile Phone System
- GSM = Global System for Mobile Communications
- GPRS = General Packet Radio Service
- CDMA One
- CDMA 2000
- EV-DO = Evolution-Data Optimized
- EDGE = Enhanced Data Rates for GSM Evolution
- UMTS = Universal Mobile Telecommunications System
- DECT = Digital Enhanced Cordless Telecommunications
- Digital-AMPS = Advanced Mobile Phone System
- iDEN = Integrated Digital Enhanced Network

Major Differences between WiFi and Cellular

	WiFi	Cellular
Pay to connect	No	Yes
Device Identity	48-bit MAC Address 64-bit MAC Address (EUI)	Yes (64-bit IMEI/IMSI in SIM Card)
Authentication	Yes (and No)	User Subscription
Network Identity	SSID	Home Network / Foreign Network (Roaming)
Area of Coverage	Meters	Kilometers

IMEI = International Mobile Equipment Identity IMSI = International Mobile Subscriber Identity

IMSI = International Mobile Subscriber Ider EUI = Extended Unique Identifier

Cellular History

- 1G, 2G, 3G separate voice and data services
 - Circuit switched network for voice calls and text
 - Packet switched network for data
 - Cellular providers must maintain two separate networks
- 4G LTE and 5G handle all services as IP network

Generation	Commercial Name	Access Method
1G	AMPS	FDMA
2G	GSM, GPRS, EDGE	TDMA
3G	UMTS, EV-DO	CDMA, Wide-CDMA
4G	4G LTE	Orthogonal FDMA

4G LTE Cellular Network (of One Provider)

LTE Radio Access Network

- LTE Frequency Bands
- Orthogonal Frequency Division Multi Access (OFDM)
 - Combination of FDM and TDM
 - "Orthogonal" \Rightarrow frequency of neighboring channels are chosen to minimize interference
 - TDMA: 500 microseconds time slots

OFDM[A]

- Combines benefits of TDMA and FDMA
- Similar idea to CDMA but operates in the frequency domain
- FDM subdivides the communication link into N channels, each channel use a different (sub) frequency
- OFDM[A] = FDM where each sub frequency is an **integer multiple** of a **fundamental frequency**
- Stream of data bits are spliced into smaller group of bits, each group is encoded using a different frequency
- Benefits
 - Subchannels can be packed closer to each other while minimizing interference
 - Efficient implementation using Fast Fourier Transform

Fourier Transform (Fourier Series)

$$X(f) = \int_{-\infty}^\infty x(t) \; e^{-i2\pi f} \, dt$$

Joseph Fourier (1807): a function can be expressed as an infinite sum of sine and cosine functions of <u>various frequencies</u>

3Blue1Brown: Drawing Joseph Fourier using Fourier Series

 $egin{array}{lll} x(t) & ext{function in time domain} \ X(f) & ext{function in frequency domain} \end{array}$

Moog synthesizer (1964)

OFDMA: Multiple of Fundamental Frequency

LTE OFDMA Implementation

- 12 sub channels, each sub frequency is a multiple of 15 KHz (F_c)
 - 15KHz, 30 KHz, 45 KHz, ...
- Duration of symbols is 1/F_c seconds = 66.67 microseconds
 - Resistant to relatively long multipath propagation delay
 - \circ $\;$ For instance, 6 microseconds (1.8 kilometers) contributes only to 10% time shift
 - $\circ~~$ 7 symbols (per channel) can be transmitted in a 500-millisecond block
 - 7x12 symbols can be transmitted in a 500-millisecond block across all 12 channels

LTE OFDMA Implementation

Specialized "Servers" in 4G LTE Network Mobility Management Entity ("Mobility Management Service") Manages live data of the connections 0 0 Authentication: Device-to-Network, Network-to-Device Device handover between cells 0 • Path setup (tunneling) from mobile device to Packet-Gateway • Tracking device location ⇒ Has been used as Forensic Evidence in Criminal cases Home Subscriber Service Manages static data of the subscribers 0 DB of mobile subscribers 0 **Billing** info Plan details (data limit, text/voice limits, etc.)

Specialized Routers in 4G LTE Network

- Service Gateway (S-GW)
 - Entry point from the base station to the Packet Core
- Packet Data Network Gateway (P-GW)
 - "Outgoing" gateway
 - The last LTE element that pushes IP datagram from a mobile device to the Internet
 - Provide Network Address Translation Services
 - Most providers use private IP address within their "home network"

Associating with a Base Radio Station

4G LTE vs. 5G

	4G LTE	5G
Frequency Band(s)	< 6 GHz	low band: < 1GHz medium band: 1-2.6 GHz, 3.5-6 GHz high band: 24-40 GHz (millimeter waves)
Data rate	lower	higher
Coverage	longer distance (kilometers)	shorter distance (10-100m)
Cellular structure	Less dense cells	More dense "pico cells"

