Chapter 03
Network Layer

Control Plane

Network Layer: Data and Control Planes

Application

Transport

Network Ch 4: IP protocol, ICMP protocol
address format, packet handling

Control Plane
Ch 5: Routing Algorithms

Link

Physical

Network Layers

Two important planes & functions

e Data Plane: actions inside each individual routers (forwarding)

e Control Plane: “coordinated” actions among all the routers (routing)
o Traditional routing algorithms
m Centralized: Dijkstra like algorithm (link state)
m Distributed: Bellman-Ford algorithm (distance vector)
o Network management
o Network configuration

Routing Algorithms:
How To Find Best Paths
From One Source to Many Destinations

Road Navigation

waze® @

Google Maps

These apps have a global map of the entire world!
Current traffic conditions

Routing Algorithms (Executed by Routers)

e Goal: compute “good” paths/routes from senders to receivers
o Not just a single path!
o Good: “cheapest”, “fastest”, “shortest”, “least congested”, ...
e Two well-known algorithms
o Dijkstra like based on link state
o Bellman-Ford based on distance vector
e Modeled using a weighted graph
o Nodes/Vertices are routers

o Edges are network links
o Weights are the cost of using (direct) links. Interpretation of cost: time, level of

congestion, number of hops, etc.

Dijkstra vs. Bellman Ford

Dijkstra

Bellman-Ford

Execution Mode

Centralized

Decentralized

Information Needed

Each router requires the complete
graph

Each router needs to know only its
immediate neighbors

Key Step in each
iteration

Improve the cost only to neighbors of
the best vertex

Improve the cost over all edges in
the graph

Advantage

Limitation

Globally Faster

Can’t handle negative edges

Globally Slower

Can handle negative edges

Link State

(Current) State of a link:

e Isitup ordown?
e Its IP address and network mask
e What type of network it is connected to

Dijkstra Link-State Algorithm

e Centralized, requires knowledge of the entire network topology
e |terative, computes the least cost from a SINGLE source node (u) to ALL

other destinations nodes
o The output can be used as the forwarding table at u

o Each router runs the Dijkstra algorithm using its own node as the source to compute its
forwarding table

e After k iterations, the algorithm knows the least cost path to k
destinations

e Route Oscillation is possible when cost is computed based on dynamic
properties (such as the current congestion level, the current amount of
traffic)

Shortest Path Algorithm (1958)

// Shortest paths from source S to all other nodes // Compute shortest paths from source S to all other nodes
function Dijkstra(S) { function BellmanFord(S) {

add v to Unvisited

while Unvisited is not empty { repeat M-1 times { // M is the number of vertices
u = vertex in Unvisited with minimum dist[u]
remove u from Unvisited

for each neighbor v of u in Q { for each edge (u,v) {

} Dijkstra Visualization| |3

only this portion runs in each router

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

Shortcuts in Dijskstra/Bellman-Ford

P 4 cost(u,v)

which route is better

_ < to reach v?
\\ // \\\ | \\ P
\\] \\ “ \ ‘-~—/
S SO \ \
\ \
. \
dist(v) Seolo?
- - - - sequence of edges
> direct edge min { dist(v), dist(u) + cost(u,v) }

Bellman-Ford Algorithm

e Decentralized / distributed algorithm

o

o

Each node/router computes its best path to the destination (“distance vector”) and
broadcast this information to all its neighbors

Upon receiving a set of distance vectors (from its neighbors), a node updates its best path
calculation (and send the updated cost to its neighbors)

e Based on dynamic programming approach
e |terative

o

o

At time 0 every node has the distance vector available on at itself

At (the end of) time 1 the distance vector of a node has propagated to nodes 1 hop away
from that node

At (the end of) time k the distance vector of a node has propagated to nodes k hops away
from that node

Dijkstra Shortest Path Example

Node dist pred

A o ?

B o ?

C o ?

D o ?

E o ?

F oo ?

Dijkstra Shortest Path Example
Source A

- Node dist pred
A =0 None

0 ?

M m O (@) (o9}
8
N Y|

Dijkstra Shortest Path Example

A unvisited neighbors: B, C, E

Node dist pred
IR
B %2 A
C %6 A
D o0 ?

E %3 A
F o0 ?

Best unvisited neighbor: B

Dijkstra Shortest Path Example

B unvisited neighbor(s): C, F

Node dist pred

C 6=3 AB
D = ?
E 3 A
F ©=5 B

Best unvisited node: C (or E)

Dijkstra Shortest Path Example

C unvisited neighbor(s): F
6

5
1

D w0 ?

E 3 A

F unchanged
Best unvisited node: E

Dijkstra Shortest Path Example

E unvisited neighbor(s): D

Node dist pred

Best unvisited node: F

Dijkstra Shortest Path Example

F unvisited neighbor(s): D

Best unvisited node: D

Dijkstra Shortest Path Example

D unvisited neighbor(s): None

Node dist pred

Best unvisited node: D

Dijkstra Shortest Path Example

D unvisited neighbor(s): None

Node dist pred

Best unvisited node: None

Forwarding Table for Node A

Dest Path Output Link
B A=B #1
Cc A=B=C #1
D A=B=F=D #1
E A=E #2
F A=B=F #1

Bellman-Ford Algorithm

Bellman-Ford: Initial Distance Vectors

DV@A DV@B Dv@C

o 2 [l - IENEN 20 o N - ENEN 6 1 NN - IENEN

DV@E

Bellman-Ford: A receives update from B (thru Link-n)

DV®@A (updated)

R

Output link

Bellman-Ford: B receives update from A

DV@B (updated)

Bellman-Ford: C receives update from B

DV@C (updated)

Bellman-Ford: Building Forwarding Table

Dest | Output Link (current) | Output Link (updated)

Link-2 update from B arrives at C from Link-2

Link-2

Bellman-Ford: Actions per Node

repeat {
wait for update from neighbors
recalculate my distanceVector
readjust my routing table
if my distanceVector has changed {
send my distanceVector to my neighbors

Implementation Issues

e Both Dijkstra & Bellman-Ford algorithms require routers to exchange
information to neighbors

Issue: Running either algorithm on a huge network is NOT scalable
Solution
o split the network into groups/domain/regions/autonomous systems
m typically one AS per organization
e GVSU Allendale, GVSU Pew Campus, AT&T, Comcast, Verizon, etc.
o distinguish between intra-domain routing and inter-domain routing
m Intra-domain: GVSU Wifi (in MAK) and GVSU Wifi (in Fieldhouse)
m Inter domain: Verizon and GVSU network

Intra-Domain vs Inter-Domain

Merit Network

(Michigan Educational
Research Information Triad)

Intra
DO% \."
&

N\

Intra Domain Routing

e RIP(REC1/23 Nov 1994)

o Routers exchange distance vectors every 30 seconds

o Limited to 50 hops
o Link cost is solely based on hop counts, not actual propagation time

o No longer widely used
Enhanced Interior Gateway Routing Protocol (RFC7868)
o Based on distance vector (Bellman-Ford algorithm)
OSPF: Link-State Dijkstra Shortest Path Algorithm
Version 2: REC2328 (1998) IPv4 only
Version 3: RCC5340 (2008) IPv6

[]
o

o

https://datatracker.ietf.org/doc/html/rfc1723
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc5340

0SPF

OSPF General |dea

e Initialization/Flood Stage
o Announce your presence (Link State Advertisement) to your neighbors (HELLO)
o Receives announcement from your neighbors
e Build The Map (of the “area”) = Link State Database
o Re-announce when self changes (LS Update)
o Request specific details from neighbors (LS Request & LS Ack)
e Routing Stage
o Execute the Dijkstra Shortest Path Algorithm

Link State Announcements

(sub)Network
#2 .
128.64.76.0/22

(sub)Network
#3

(sub)Network
#4

Inter-Domain Routing
Border Gateway Pratocol (BGP)

BGP on two napkins over conference lunch break

i i = W
fpudny Vs ;y/:" i e Cotsormanbmr)
%f'fﬂ/p holebelown " fmcor 2 b4y, wiobes)
open =1 T el ke G
A -1
robhiotion - H- o @ kil ks ScowvECT
hogpplre = & - 2 OPEN -SEAD g S
apid; kA 2 4k TN
e ¥ype A g,.;_/)
o 5=t) veeu 3
ot ~ nd
i P = e |
H-thke - & /‘l,.ﬁ(-";
ok dype oo I byle T Febef e
e .
/
whecheoton vonihle
T T T 7 oot of spue (lool cloy
oeafe retwork N by @ - »;:;IA- *;«:7‘”
Ent hoy palura 4 by ol “ oy oSown
Al Rl 2 4ytes ’“:t‘,.h‘n:t (d
,,wz‘,:v/f ot oF A5 I byfe [
ol iection | byte E vepout et %
A5 # 2 /v)//g Fomes
wolibiakin. e oprode. 2 ks lombead6cisio.com G317 (=7) ST
dlekc verale \ARV@IBH. Con VO e) BT
RFC1267 Kirk Lougheed & Yakov Rekhter

BGP

BGP-3 REC1267 (Oct 1991) “BGP on Napkins”
BGP-4 REC 4271 (Jan 2006)
Built on-top of TCP (Port 179)

Inter Autonomous System Routing Protocol
o Autonomous System (AS) = “Domains”
e Like a coin, BGP has two sides

o External (eBGP) : object reachability info from neighboring autonomous systems
o Internal (iBGP): propage reachability info to all the routers within the autonomous system

https://datatracker.ietf.org/doc/html/rfc1267
https://datatracker.ietf.org/doc/html/rfc4271

BGP: External BGP & Internal BGP

Merit Network

(Michigan Educational
Research Information Triad)

gateway routers: run

® gateway/boundary routers bhoth eBGP and iBGP

Q@ internal routers

BGP: AS Path Vector & Routing Policy

e Distance vectors in Bellman-Ford algorithm contain numbers

representing cost to reach particular nodes
e Vectors advertised in BGP contain AS path to reach particular nodes
o Hence BGP is also called “Path Vector” protocol
e Arouter can decide whether path details in incoming advertisement will
be re-advertised to its neighbors or filtered out altogether

o Real world examples
m Verizon network may not want to carry transit traffic from AT&T

Verizon customers may have to pay ROAMING charges when their traffic are routed
via other provider

eBGP: AS Path Advertisement from Google to GVSU

Merit Network

(Michigan Educational

GVSU /&

YouTube.com

Four Autonomous Systems

Verizon

eBGP: Loop Detection in Path Advertisement

Merit Network (

(Michigan Educational Merit, Van G
Research Information Triad ‘ °°gle) Svyr com

Google gateway router
receives a path advertisement
that contains itself

Action: ignore

YouTube.com

BGP Routes: Next-Hop + AS-Path + Destination

Route: 35.2.2.2; Vrzn, Google; YT.com

yt.co™
i Gooe®”
ot
o IP:35.2.2.2

IP: 64.12.0.1

Route: 64.12.0.1; Vrzn, Google; YT.com

Merit Network

(Michigan Educational
Research Information Triad) YT g/e) =
m

(Gog,

.o,

Google

Verizon

BGP: Route Selection Criteria

1. Prefer shorter AS path

2. Among the paths with the same AS Path length, prefer closer Next Hop

Route: 35.2.2.2; Vrzn, Merit, Google; YT.com

Route: 35.2.2.2; Vrzn, Google; YT.com

Route: 35.2.2.2; Vrzn, Google; YT.com

Route: 64.12.0.1; Vrzn, Google; YT.com

X: Longer AS Path

v : Shorter AS Path

Choose route with shorter RTT

RTT(35.2.2.2) vs. RTT(64.12.0.1)

|CMP
Internet Control Message Protocol

|CMP: Internet Control Message Pratocol

e ICMP
e Used by host / routers for Network Layer Information
o Errors

o Echo request/reply (PING)
e |ICMP messages are carried as payload in IP datagrams

ICMP

Message Type/Code

Type Description Type Code Description
3 Destination Unreachable 4 0 No space in buffer
4 No space in buffer 5 0 Redirect datagrams for the network
5 Datagram redirected 1 Protocol unreachable
8 Echo 2 Port unreachable
0 Echo reply 3 Fragmentation needed
11 Time expired 5 Source field failed
12 Parameter error " 0 TTL expired
13 Timestamp 1 Fragment reassembly time exceeded
14 Tinestano reply
| P -|-. . . .
ime-To-Live Expiration
TTL: 4
SRC: 35.10.2.98
Host DST: 110.5.71.22 Host
35.10.2.98 110.5.71.22
TTL: 3 TTL: 2 TTL: 1 TTL: 0

SRC: 35.10.2.98
DST: 110.5.71.22

SRC: 35.10.2.98
DST: 110.5.71.22

SRC: 35.10.2.98
DST: 110.5.71.22

SRC: 35.10.2.98
DST: 110.5.71.22

&

&

ICMP: TTL expired
SRC: 81.33.20.19
DST: 35.10.2.98

&
[Eratos 1 502075]

(raceroute

traceroute to computing.gvsu.edu (104.17.88.18), 30 hops max, 60 byte packets

no response within 5 seconds

* ¥ X
* ¥ ¥ X
* ¥ X X

*

1

2

3

4

5 148.61.0.126 (148.61.0.126) 2.874 ms 2.921 ms 3.661 ms

6 1irbx643.gdrp-eberhard-c1.mich.net (192.122.182.137) 1.078 ms 1.078 ms 1.112 ms
7 et-5-3-0x3.dtrt-wsudc-cl.mich.net (207.72.230.47) 4.705 ms 4.739 ms 4.716 ms

8 et-4-1-5x3.sfld-cor-123net.mich.net (207.72.230.128) 4.631 ms 4.680 ms 4.612 ms
9 static.det-ix.net (209.124.52.26) 5.144 ms 5.514 ms 5.298 ms

10 104.17.88.18 (104.17.88.18) 4.581 ms 4.618 ms 4.628 ms

TraceRoute Implementation: UDP + IP + Increasing TTLS

TTL: 1 TTL: @
SRC: X DST: Y SRC: X DST: Y

Host X R2 HostY
¥®—®m X X
ICMP #1: TTL expired
SRC: Router #1 DST: X
N
TTL: 1 TTL: 0
SRC: X DST: Y SRC: X DST: Y
Host X Host Y
—_ X X X
SRC: X DST: Y R2

ICMP #1: TTL expired
SRC: Router #2 DST: X

TraceRoute Implementation: UDP « [P + Increasing |

<
TTL: 3 TTL: 2 TTL: 1 TTL: ©
Host X SRC: X DST: Y SRC: X DST: Y SRC: X DST: Y SRC: X DST: Y
R1 R2 R3 R4
TTL: 4 %
SRC: X DST: Y
ICMP #1: TTL expired
SRC: Router #4 DST: X
TTL: 4 TTL: 3 TTL: 2 TTL: 1
Host X SRC: X DST: Y SRC: X DST: Y SRC: X DST: Y SRC: X DST: Y
TTL: 5 <:§E;> <:§E;>
SRC: X DST: Y 1 R2 R3

LS

Host Y

TTL: @
SRC: X DST: Y

Host Y

ICMP: Unreachable Port

SRC: Host Y, Dest: X

