
Ch03: Transport
Layer

Layered Structure (Recall)

Application

Transport

Network

Link

Physical

Transport Layer
● data transfer from process (in one host) to

process (in another host)
● it assumes the existence of a (direct) logical

channel between the two processes

Network Layer
● data transfer from one host to another

host

You are here

N Processes in One Host

Web Server

Mail Server

IP: 231.15.33.86 IP: 10.33.189.77

Application Layer Perspective: App to App

Web Server

Mail Server

IP: 231.15.33.86 IP: 10.33.189.77

Transport Layer Perspective

Web Server
(Process 291)

Mail Server
(Process 3877)

IP: 231.15.33.86 IP: 10.33.189.77

FireFox, Process 3900

FireFox, Process 3955

Outlook (Process 3155)

Transport Layer Perspective: Process to Process

Process 291
Port 80

Process 3877
Port 25

IP: 231.15.33.86 IP: 10.33.189.77

Process 3900, Port 4512

Process 3955, Pot 66111

Process 3155, Port 8322

Each process is associated with a unique PORT number

Bank Routing Number & Account Number

Routing number = IP address Acct number = Port #

Transport Layer

Application Layer

App Data (Messages) vs. Segment

Mail ServerPort
25

Port
66111

IP: 231.15.33.86 IP: 10.33.189.77

2000-byte message

Seg #2

Seg #4

Seg #1

Seg #3

Transport Layer to Network Layer

Process 291
Port 80

Process 3877
Port 25

IP: 231.15.33.86 IP: 10.33.189.77

Process 3900, Port 4512

Process 3955, Pot 66111

Process 3155, Port 8322

MUX DEMUX

Transport Layer to Network Layer

Process 291
Port 80

Process 3877
Port 25

IP: 231.15.33.86 IP: 10.33.189.77

Process 3900, Port 4512

Process 3955, Pot 66111

Process 3155, Port 8322

MUXDEMUX

Network Layer: Host to Host

IP: 231.15.33.86 IP: 10.33.189.77

Process 3900 @ 4512

Process 3955 @66111

Process 3155 @8322

Process 291 @ 80

Process 3877 @25

Mux/Demux
● On a single host there can be several processes creating a socket
● Each socket must be associated with a unique port number

○ An attempt to create a socket with a port number currently in use will trigger an error
○ We can’t use the process ID as the port number, because this will prevent a process from

opening multiple sockets simultaneously

● When a data is pushed by the sender socket it will be received by the
receiver socket.

○ The sender socket port number is unique among the other sockets on the sender host
○ The receiver socket port number is unique among the other sockets on the receiver host
○ Hence, each packet will always include both the source and destination port numbers

Mux/DeMux
Multiplexing (on Sender Side)

● On a single host, several processes (hence several sockets) may need to
send packets into the network

● The transport layer must tag these packets with port number of the
sending socket before pushing them into the network

Demultiplexing (on the Recipient Side)

● On single host, several processes (hence several sockets) may be waiting
for data (from the network)

● When a packet arrives at the host, the transport layer use the destination
port number to forward the packet to the intended recipient socket

Communication with UDP Sockets

Server Side
SERVER_PORT = 53 # DNS
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(“”, SERVER_PORT)
while True:
 data, addr = serverSocket.recvfrom(____)
 # do work here
 serverSocket.sendto(_____)

Client Side
SRV_PORT = 53
SRV_ADDR = “xx.yy.zz.ww”
clientSocket = socket(AF_INET, SOCK_DGRAM)
clientSocket.sendTo(___, (SRV_ADDR,PORT))
Do work here
clientSocket.recvfrom(____)

IP: 231.15.33.86

UDP Demux Details
DNS Server

Port 53

IP: 35.11.7.85

IP: 10.33.189.77Client #1, Port 4500

Client #2, Port 4600

Socket #1

Socket #2

Socket #3 server socket

Client #3, Port 4600

Socket #4

(From, To) Source IP Src Port Dest IP Dest Port Recipient

(S1, S3) 231.15.33.86 4500 10.33.189.77 53 DNS Srv

(S2, S3) 231.15.33.86 4600 10.33.189.77 53 DNS Srv

(S3, S1) 10.33.189.77 53 231.15.33.86 4500 Client #1

(S3, S2) 10.33.189.77 53 231.15.33.86 4600 Client #2

(S4, S3) 35.11.7.85 4600 10.33.189.77 53 DNS Srv

(S3, S4) 10.33.189.77 53 35.11.7.85 4600 Client #3

Destination port uniquely identifies recipient

Demultiplexing UDP packets
● Communication via UDP sockets involves only the two sockets (one at the

sender host and one at the recipient host)
● Dispatching incoming packets to the intended recipient can done by using

only the destination port number on the recipient host

Communication with TCP Sockets

Server Side
SERVER_PORT = 7777
acceptSocket = socket(AF_INET, SOCK_STREAM)
acceptSocket.bind(“”, SERVER_PORT)
acceptSocket.listen(1)
while True:
 connectSocket, addr = acceptSocket.accept()
 # do work here
 connectSocket.close()

Client Side #1
SERVER_PORT = 7777
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect(“”, SERVER_PORT)
Do work here
clientSocket.close()

Client Side #2
SERVER_PORT = 7777
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect(“”, SERVER_PORT)
Do work here
clientSocket.close()

TCP Demux Details: Initial Connection
Web Server

Port 80

IP: 231.15.33.86

IP: 10.33.189.77

FireFox #1, Port 4500

FireFox #2, Port 4600

Socket #1

Socket #2

Socket #3 “accepting” socket

(From,
To)

Source IP Source Port Dest IP Dest Port Recipient

(S1, S3) 231.15.33.86 4500 10.33.189.77 80 PID 2000

(S2, S3) 231.15.33.86 4600 10.33.189.77 80 PID 2000

Process 2000

TCP Demux Details: Subsequent Exchanges
Web Server

Port 80

IP: 231.15.33.86 IP: 10.33.189.77

FireFox #1, Port 4500

FireFox #2, Port 4600

Socket #1

Socket #2

Socket #3

Socket #4

Socket #5

“accepting” socket

connection socket

Socket Pair Source IP Source Port Dest IP Dest Port Recipient

(S1, S4) 231.15.33.86 4500 10.33.189.77 80 PID 2100

(S2, S5) 231.15.33.86 4600 10.33.189.77 80 PID 2200

Process 2100

Process 2000

Process 2200

Destination port DOES NOT uniquely identifies recipient.
Must also include Source (IP & Port) to identify recipient

Demultiplexing TCP packets
● The server is listening for new connection on the accepting socket
● A new client connection creates a third socket, created by the server at

the time of accept() in response to client connect()
○ There is always ONE instance of accepting socket
○ But potentially multiple instances of these “third socket”s (one per client connection)

● But the third socket is local to the server and the client has no
knowledge of its details. The client must continue to use the port number
of the accepting socket as the destination port number

● Using only the destination port, the server will not able to forward
incoming packets to the correct instance of “third socket”

○ Hence the 4-tuple (source IP, source port, dest IP, dest port) must be used

TCP vs. UDP

UDP TCP

Reliable ❌ ✅
In-order delivery ❌ ✅
Flow Control ❌ ✅
Congestion Control ❌ ✅
Delay guarantee ❌ ❌
Bandwidth guarantee ❌ ❌
Require connection setup No Yes

UDP Jokes https://medium.com/pragmatic-programmers/udp-humor-bd20bcdd355e

Joke #1:
I was recently invited to a costume party. I dressed up as a UDP packet, but no one

acknowledged me

Joke #2:
The problem with UDP jokes is that I don’t get half of them!

Joke #3:
You know the best part of UDP jokes? If the other person doesn’t get it, I don’t care

Joke #4:
A UDP packet walks into a bar. A walks UDP packet bar a into.

https://medium.com/pragmatic-programmers/udp-humor-bd20bcdd355e

UDP reliability: “correctness” data (if
received) is verified via checksum

Reliable Data Transfer

Expectations of “Reliability”
● No packet loss
● No data corruption
● In-order delivery

Textbook: Reliable Data Transfer
My slides:
● Reliable Data Transport
● RDT x.x ⇒ FSM x.x

FSM 1.0 Reliable Data Transport

packet = makePkt(appData)
send(packet)

wait for packet from
Network Layer

data = extractPkt(packet)
forward_to_app(data)

sender receiver

wait for packet from
App Layer

FSM 2.0 Data Transport With Data Errors

packet = makePkt(appData)
send(packet)

wait for packet from
Network Layer

sender receiver

wait for packet from
App Layer

wait for ACK/NAK

IF recv(packet) && isOK(packet)
data = extract(packet)
forward_to_app(data)
send(ACK)

IF recv(packet) && isCorrupt(packet)
send(NAK)

Sender does not check for data corruption!

IF recv(packet) &&
 isACK(packet)

IF recv(packet) && isNAK(packet)
(re)send(packet)

FSM 2.0 Issues:
Does not check for ACK/NAK corruption

What to send when ACK/NAK is corrupted?

FSM 2.1 = FSM 2.0 with ACK/NAK errors

pkt = makePkt(n, appData)
sendWithChkSum(pkt)

wait for packet n
from Network Layer

sender receiver

wait for packet n
from App Layer

wait for ACK/NAK n

IF recv(pkt) && isOK(pkt) & hasSeq(pkt,n)
data = extract(pkt)
forward_to_app(data)
sendWithChkSum(ACK, n)
n = n + 1

IF recv(pkt) && isCorrupt(pkt)
sendWithChkSum(NAK, n)

IF recv(pkt) && isOk(pkt) && isACK(pkt,n)
n = n + 1

IF recv(pkt) && (isCorrupt(pkt) || isNAK(pkt, n))
(re)sendWithChkSum(pkt)

IF recv(pkt) && isOK(pkt) && seq(pkt) != n
sendWithChkSum(ACK, seq(pkt))

FSM 2.2 = FSM 2.1 without NAK

pkt = makePkt(n, appData)
sendWithChkSum(pkt)

wait for packet n
from Network Layer

sender receiver

wait for packet n
from App Layer

wait for ACK n

IF recv(pkt) && isOK(pkt) & hasSeq(pkt,n)
data = extract(pkt)
forward_to_app(data)
sendWithChkSum(ACK, n)
n = n + 1

IF recv(pkt) && isCorrupt(pkt)
sendWithCkhSUm(ACK, lastACKnum)

IF recv(pkt) && isOk(pkt) && isACK(pkt, n)
n = n + 1

IF recv(pkt) && (isCorrupt(pkt) || notACK(pkt, n))
(re)sendWithChkSum(pkt)

IF recv(pkt) && (isOK(pkt) || seq(pkt) != n)
sendWithChkSum(ACK, seq(pkt))

FSM 2.2 in action

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1 rcv bad pkt

send ACK0

ReceiverSender

rcv pkt1
send ACK1

rcv ACK1
send pkt2

n: 0

n: 1

rcv ACK0
resend pkt1

n: 0

n: 1

n: 2

rcv pkt2
send ACK2

n: 3
rcv ACK2

send pkt3n: 3

n = 2

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

ReceiverSender

rcv pkt1
send ACK1

rcv ACK1
send pkt2

n: 0

n: 1

n: 2rcv bad ACK
resend pkt1

n: 0

n: 1

n: 2

rcv pkt2
send ACK3 n: 3

rcv ACK3
send pkt3n: 3

Expect 2

dup dup

FSM 3.0 = FSM 2.2 with Sender TimeOut

pkt = makePkt(n, appData)
sendWithChkSum(pkt)
startTimer()

wait for packet n
from Network Layer

sender receiver

wait for packet n
from App Layer

wait for ACK n
(with timer)

IF recv(pkt) && isOK(pkt) & hasSeq(pkt,n)
data = extract(pkt)
forward_to_app(data)
sendWithChkSum(ACK, n)
n = n + 1

IF recv(pkt) && (isCorrupt(pkt) || seq(pkt) != n)
sendWithChkSum(ACK, lastACKnum)

IF recv(pkt) && isOk(pkt) && isACK(pkt, n)
n = n + 1
stopTimer()

IF recv(pkt) && (isCorrupt(pkt) || notACK(pkt, n))
(re)sendWithChkSum(pkt)

sendWithChkSum(pkt)
startTimer()

lastAckNum is n-1?

FSM 3.0 in action

send pkt0
rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

❌

tim
eo

ut

ReceiverSender

send pkt1
rcv pkt1
send ACK1

rcv ACK1
send pkt2

send pkt0
rcv pkt0
send ZACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

tim
eo

ut

ReceiverSender

resend pkt1

rcv pkt1 (ignore)
send ACK1

rcv ACK1
(ignore)

n: 0

n: 1

n: 1

rcv ACK1
send pkt2

n: 0

n: 1

n: 2

rcv pkt2
send ACK2

rcv ACK2
send pkt3

n: 2

n: 2

n: 0

n: 1

n: 1

n: 0

n: 1

n: 2

n: 2

Expect 2

Stop & Wait for ACK

ACK

ACK

T

RTT

Utilization =

Pipelined Transmission

Utilization =

ACK

T

RTT

Utilization =

ACK

T

RTT

How long can we increase the pipeline?

Pipelined Packet Types
On Sender

● Sent and ACKed
● Sent but non ACKed (in-flight)
● Not (yet) Sent

On Receiver

● Received in-order and ACKed
● Received out-of-order
● Not (yet) Received

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Pipelined Packets: Implementation

Sender Receiver

Go-Back-N One timer set for the oldest in-flight packet.
OnTimeout: resend all (“Go Back”) N packets

Cumulative ACK

Selective Repeat Multiple timers: one for each in-flight packet
OnTimeout(k) resend only packet(k). “Selective”

Individual ACK

Go-Back-N = Pipeline + Improved FSM 3.0

FSM 3.0 + PipeLine (in-flight: 4)

send pkt0

rcv pkt0, send ACK0
send pkt1

rcv pkt1, send ACK1

timeout

ReceiverSender

rcv ACK0, send pkt4

rcv pkt4, send ACK1

send pkt 2,3,4,5

n: 0

n: 1

iF: (0)
iF: (0,1)
iF: (0,1,2)
iF: (0,1,2,3)

n: 0

n: 1

n: 2

n: 2

Expect #2, but receive #3
resend last good ACK

send pkt2
send pkt3

rcv ACK1, send pkt5

❌

rcv pkt3, send ACK1

rcv ACK1
(ignore)ACK1 is out of window

iF: (1,2,3,4)
iF: (2,3,4,5)

iF: (2,3,4,5)

Expect #2, but receive #4
Expect #2, but receive #5rcv pkt5, send ACK1

rcv pkt2, send ACK2 Expect #2, receive #2
n: 3

Go-Back-4

Go-Back-N
Sender

● A sliding window of size N
● Max N packets allowed to be in the

pipeline (“in-flight”)
● Cumulative ACK: ACK(N) means all

packets k ≤ N have been received.
○ Packet N is the youngest ACKed packet
○ The window shifts to position N + 1, i.e.

N+1 is now the oldest in-flight packet
● Set timer only for the oldest in-flight

packet
● On timeout(p): resend packet p and

higher (younger) within the allowed
window

Receiver

● Use NO sliding window
● Only ACK in-order packets (oldest

in-flight packet)
○ When out-of-order packet arrived,

re-ACK with the highest in-order packet
(youngest packet ACKed)

● It is sufficient to keep track the youngest
ACKed packet

● Young/old is by birth at the sender (not
by arrival at the receiver)

Go-Back-5 Sender Window (Size = 5)

0 1 2 3 4 5 6 7 8 9 10

ACKed In-Flight
Ready

to send
Can’t
send

0 1 2 3 4 5 6 7 8 9 10

window: 5

window: 5

Receive ACK(4)

0 1 2 3 4 5 6 7 8 9 10

window: 5

Receive ACK(3)

younger

cumulative ACK

timer is set only for packet 3 (oldest in-flight)

timer is set only for packet 5

Go-Back-N: Cumulative ACK

send pkt0

rcv pkt0, send ACK0
send pkt1

rcv pkt1, send ACK1

ReceiverSender

send pkt5
rcv pkt4, send ACK4

n: 0

n: 3

iF: (0)
iF: (0,1)
iF: (0,1,2)
iF: (0,1,2,3)

n: 0

n: 1

n: 2

ACK0, ACK1 not in
window

send pkt2
send pkt3

send pkt6

rcv pkt3, send ACK3
rcv ACK2, send pkt4

iF: (3,4,5,6)

iF: (4,5,6,7)

rcv pkt5, send ACK5

n: 3
rcv pkt2, send ACK2

n: 4

rcv ACK0 (ignore)
rcv ACK1 (ignore)

rcv ACK3, send pkt7

n: 5

n: 6

Go-Back-5 Packet Lineup

0 1 2 3 4 5 6 7 8 9 10

ACKed In-Flight
Ready

to send
Can’t
send

0 1 2 3 4 5 6 7 8 9 10

window: 5

younger

Sender View

Receiver View

received out of order (not ACKed)

not received

Go-Back-N Animation

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/go-back-n-protocol/index.html

Selective Repeat

Selective Repeat
Sender

● A sliding window of size N
● Max N packets allowed to be in the

pipeline (“in-flight”)
● Set one timer each in-flight packet

○ Timeout can be observed per packet
○ On timeout(p): resend only packet p

● Slide the window (forward) where there
is no gap in the ACKed packets

Receiver

● A sliding window of size N
● Max N packets expected to be in-flight

● Individual ACK for both in-order &
out-of-order packets

Slide the window (forward) where there
is no gap in the ACKed packets

Selective Repeat Packet Lineup

0 1 2 3 4 5 6 7 8 9 10

ACKed In-Flight Ready to send Can’t send

0 1 2 3 4 5 6 7 8 9

window: 7

younger

Sender View

Receiver View

received out of order & ACKednot yet received

11 12

10 11 12

Out of window

Selective Repeat Animation

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/content/interactiveanimations/selective-repeat-protocol/index.html

TCP (Transmission Control Protocol)

From Go-Back-N/Selective Repeat to TCP

Go-Back-N Selective Repeat TCP

Sequencing Packet numbers Packet numbers Byte sequence numbers

Acknowledgment Cumulative Individual Byte cumulative

Timer One timer Multiple timers One timer

On Timeout Resend all N packets Resend only the packet
associated with timeout

Resend only the segment that
caused timeout (inferred from
last byte acknowledge)

TCP Header

source port (16 bits) dest port (16 bits)

sequence # (32 bits)

acknowledgement # (32 bits)

How many bytes I have sent you
(prior to this segment)

How many bytes I have received
from you

Each sender/receiver maintains these two variables

other fields not shown here

TCP Sequence # and Ack #
K bytes ACKed

window: N bytes

L bytes In-Flight
Ready

to send
Can’t
send

Sender View

Seq: K + L
src port dest port

Ack: ???
Seq: K

src port dest port

Ack: ???

Recipient View Seq: ???
src port dest port

Ack: K

TCP (Sequence & Acknowledgement)
● Bytes in the payload are numbered sequentially from 0

○ During the handshake step both parties exchange a “phantom byte”, so the first byte in
the actual application payload is byte #1

● Each TCP segment include both SEQ and ACK numbers
● SEQ # is the sequence number of the FIRST byte sent in the current

payload
○ SEQ # also indicates “how many bytes I have sent to you” (prior to this packet)

● ACK # is the sequence number of the LAST byte received up to and
including the previous payload

○ “How many bytes I have received from you”

Example TCP SEQ & ACK (Ideal Response)
Assume

● G already sent 157 bytes (and ACKed by H)
● H already sent 1250 bytes (and ACKed by G)

● G is about to send 200 bytes and in response H
will send 15 bytes

Host G Host H

Seq: 157, Ack:1250, data = 200 bytes

Seq: 1250, Ack:357, data = 15 bytes

Seq: 357, Ack:1265, data = ?? bytes

TCP Header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		C	E	U	A	P	R	S	F	
Offset	Rsrvd	W	C	R	C	S	S	Y	I	Window
		R	E	G	K	H	T	N	N	
+-+										
Checksum	Urgent Pointer									
+-+										
Options										
+-+										
data										
 +-+

 TCP Header Format (RFC 9293, Aug 2022)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	E	R	S	F	
Offset	Reserved	R	C	O	S	Y	I	Window
		G	K	L	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

 TCP Header Format (RFC 761, Jan 1980)

2-Way Handshake

Estab

Estab

Estab

Estab #1

connReq

connAccept

connReq

tim
eo

ut

❌

Client no longer exists!

client closed
the socket

server
forgets
the client

Estab #2

retry connReq

server assumes this is
a new connection
request (from the
same client)

TCP 3-Way Handshake
Server
srvSock.bind(“”, 5555)
srvSock.listen(1)

connSocket, addr = srvSocket.accept()

Client
clntSocket.connect(“”, 5555)

Client generates a random SEQ x

Seq: x, SYN:1

Server generates a random SEQ ySeq: y, SYN:1:, ACK: x + 1

Seq: x + 1, ACK: y + 1
Established

Established

Packet Loss Induces Duplicate ACKs
Sender Receiver

Seq: 150, data = 20 bytes

Ack:170

Seq: 170, data = 50 bytes
Seq: 220, data = 36 bytes

❌

Ack:170

Seq: 256, data = 200 bytes

Ack:170
Seq: 170, data = 50 bytes

● Retransmit seq# 170
● Fast Retransmit: resend after 3 duplicate

ACKS (without waiting for timer timeout)

Rack: 150 (before red dot)

Rack: 170 (after red dot)

[TCP] Flow Control

Sender

Receiver: “You are giving me too much”

[TCP] Congestion [Control]

(Grand) River Water Level After Snow Melt

Flow Control vs. Congestion Control
● Avoid overloading a receiver

○ The receiver tells the sender how much
buffer space is available to receive data

○ TCP: “Receiver Window” (RWND)
● Local issue between a single sender

and a single receiver
○ Easier to resolve

● Issue is detected/prevented by the
receiver, and the sender has make
necessary adjustments

● Symptom: (larger) packet loss at the
receiver

● Avoid overloading the network
● Too many senders sending too much

data too fast
● Global issue that requires cooperation

among participating hosts and routers
in the network

○ Harder to resolve
○ Involve the Network Layer

● Issue is detected/prevent by the senders
lowering the push/send rate

● Also involves multiple senders and
multiple receivers

● Symptoms:
○ Long delays (long queue time in routers)
○ Packet loss (buffer overflow at routers)

● TCP Header includes the “Receiver Window” field that indicates the size of
the receiving buffer on the recipient side

● On receiving this information, the sender should adjust its window size
(max bytes allowed in all the in-flight packets)

 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	E	R	S	F	
Offset	Reserved	R	C	O	S	Y	I	Window
		G	K	L	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

TCP Flow Control

Congestion?

Roads have (limited) carrying capacity (cars/minute), so do network links.

If the number of cars (bits) exceeds this capacity, we experience traffic congestion

How do you detect (& measure)
traffic congestion?

Network: Bits Pushed & Bits Consumed

Network

P1

P4

P3

P2

C3

P5

C1

C2

Network: Bits Pushed & Consumed (Aggregate)

Non-Congested
NetworkTotal Pushed Total Consumed

Network: Bits Pushed & Consumed (Aggregate)

Congested
NetworkTotal Pushed Total Consumed

How to measure congestion (collectively)
● Can’t measure congestion by the amount of data in

the network
○ Must measure the rate at which these data are transported

■ 1000 cars on a 3-lane highway
■ 1000 cars on the same highway (but 2 lanes closed)

● Assuming the link carrying capacity is (collectively) R
bits/sec:

○ All the senders (collectively) can push bits at the rate at most R
bits/sec

○ All the recipients (collectively) can consume bits at the rate at
most R bits/sec

Network: Bits Pushed & Consumed

Non-Congested

Congested

Pushed

Consumed

Consumed

Congestion & Router Buffer Capacity

Packet Lost Packet Delay

Infinite Buffer No Long

Finite Buffer Yes (High) Long

Rate of bits pushed ≈ Network Capacity

Packet Lost Packet Delay

Infinite Buffer No Short

Finite Buffer No Short

Rate of bits pushed ≪ Network Capacity

Network: N hosts Push & N hosts Consume

Non-Congested
Network

Capacity R bits/sec

Total Pushed
by N hosts

Total Consumed
by N hosts

“Fair” push rate per host-pair = R/N

How does a sender measure
its own bit push rate?

Network Resource Sharing & Congestion
● Assume we have 2N hosts making up N sender-receiver pairs
● The collective carrying capacity of the network is R bits/seconds
● If all the hosts are equally active pushing bits, each sender-receiver pair can

push/consume bits at most R/N bits/seconds
● When a sender-receiver pair exchange bits way above R/N bits/sec, other

sender-receiver pairs will suffer more packet loss, their bit throughput will
be significantly low (Congestion Collapse)

Congestion Control (Non TCP specific)
● Opt #1: End-to-End (think of it as “Host-to-Host”)

○ Senders do not get warning from the network (routers)
○ The senders themselves must infer congestion by observing packet loss (multiple ACKS

of the same sequence)

● Opt #2: Network-Assisted
○ senders and/or receivers get direct feedback from the routers. How?

■ Each router knows how busy is the traffic passing through it and who the
senders/receivers are

■ Each router may be able to calculate the desired sending rate
● In both options, the corrective action is for the senders to dial down bit

push rate

Related RFCs
● RFC 793 (Sep 1981): Initial TCP Specification
● RFC 1122 (Oct 1989): Relationship of TCP to other protocols/layers
● RFC 2018 (Oct 1996): TCP Selective ACK
● RFC 5681 (Sep 2009): TCP Congestion Control
● RFC 7323 (Sep 2014): High-Performance TCP

TCP Congestion Control

TCP Congestion Control

Classic Delayed-Based (Time-Based)

How to detect congestion? Observe packet loss Observe Round-Trip Time

How to reduce congestion? Sender decreases pipeline size
(amount of in-flight bytes)

Sender decreases pipeline size
(amount of in-flight bytes)

Packet Lost Packet Delay

Infinite Buffer No Long

Finite Buffer Yes (High) Long

In a congested network:

TCP Congestion Control
● Classic

○ Senders gradually increase their sending rate until packet loss is observed
○ When packet loss is observed, senders quickly decrease sending rate
○ Adjusting “sending rate” = adjust window/pipeline size (max bytes in-flight)
○ Implementation: continuously observe packet lost (duplicate ACKs)

● Time-Based
○ Require additional information/assistance from the Network Layer (IP Layer)
○ Time-based (Delay-Based)
○ Implementation: Routers continuously calculate round-trip time (RTT)

TCP Congestion Control
Classic: Observe Packet Loss

TCP Classic Congestion Control
● Senders probe the network carrying capacity by

○ Gradually increasing sending rate until it senses packet loss then quickly decreasing
sending rate

● During the steady portion of the connection
○ AIMD: Additive Increase Multiplicative Decrease = “Add 1, Divide by 2”

■ Increase pipe line size by 1 each time ACK is received
■ Halve the pipe line size each time packet loss is observed (repeated ACK from

receiver)

● During initial stage of connection
○ Double pipe line size until pipe line size is 50% achievable max rate so far, increase by

one thereafter

TCP Classic + Improvement #1: Cubic
● Using AIMD (additive/linear increase) the sending rate ramps up too

slowly.
● Improvement: use cubic increase to reach the max-sending-rate faster

○ tk is the desired future time to reach Wmax
○ Pipeline size is determined by a cubic function:

■ Larger increase when current time is further away from tk
■ Smaller increase when we are approaching tk

Desmos Graph

TCP Congestion Control
Time-Based (Delay-Based): Observe RTT

https://www.desmos.com/calculator/wcey1llo2u

RTT Estimate vs. Actual RTT

Day Actual Travel Time

Mar 7 20 minutes

Mar 8 32 minutes

Mar 9 25 minutes

On the morning of Mar 10, what is your estimate of travel time?

Travel time to campus

RTT Estimate vs. Actual RTT: Update Daily Estimate

Day Actual Travel Time Daily Estimate How Much You’re Off

50 minutes (initial wrong estimate) unknown

Mar 7 20 minutes (0.8)(20) + (0.2)(50) = 26 +6 (overestimate)

Mar 8 32 minutes (0.8)(32) + (0.2)(26) = 30.8 -1.2 (underestimate)

Mar 9 25 minutes (0.8)(25) + (0.2)(30.8) = 26.16 +1.16 (overestimate)

On the morning of Mar 10, you expect 26.16 minutes of travel time.
But how much off is 26.16 from your actual travel?

Travel time to campus

RTT Estimate vs. Actual RTT: Update Daily Estimate

Day Actual
Travel Time

Daily Travel Estimate
(80%, 20%)

How Much
You’re Off

Daily Off Estimate
(75%,25%)

50 minutes (initial estimate) unknown 10 minutes

Mar 7 20 (0.8)(20) + (0.2)(50) = 26 +6 (over) (0.75)(6) + (0.25)(10) = 7

Mar 8 32 (0.8)(32) + (0.2)(26) = 30.8 -1.2 (under) (0.75)(1.2) + (0.25)(7) = 2.65

Mar 9 25 (0.8)(25) + (0.2)(30.8) = 26.16 +1.16 (over) (0.75)(1.16) + (0.25)(2.65) = 1.53

On the morning of Mar 10, you expect 26.16 minutes of travel time,
and expect your estimate will be off by 1.53 minutes

Travel time to campus

TCP Congestion Control (Time-Based)
● AIMD + Cubic may “probe too far”, causing packet loss
● Objective of Time-Based is

○ Avoid inducing/forcing packet loss

● General ideal
○ Periodically compute the current sending rate from the amount of bytes successfully

pushed (and ACK’d) and their RTT
○ Lowest RTT (hence highest sending rate) ⇒ Optimal (uncongested) sending rate Ruc
○

● Warning: The textbook calls this “Delay-based TCP Congestion Ctrl”

TCP Congestion Control (Time-Based)
Recalculate current sending rate (R) periodically:

● If the current sending rate R is “very close to” the optimal rate Ruc ⇒ the
network is not congested (yes), window size can be increased

● If the current sending rate R is “far below” the optimal rate Ruc ⇒ the
network may be congested, window size should be decreased

TCP Congestion Control
ECN: Explicit Congestion Notification

(RFC3168, Sep 2001)

TCP Congestion Control: ECN
● Network-Assisted, i.e. require assistance from the Network Layer (IP

Protocol)
● Extra bits in the IP packets to notify congestion to the IP layer destination

host
● The TCP layer at the destination host relays the notification to the source

host with a ECN Echo (ECE) bit in the TCP packet
● In response, the TCP layer on the source host responds with a CWR

(Congestion Windows Reduced) bit in the TCP packet

TCP Explicit Congestion Notif: TCP + IP Layers

Congested
Network

(with multiple
routers)

Source Destination

ECN is echoed to the
source TCP layer

Congestion detected by the
routers in IP layer and notified
to the destination IP layer

Transport

Network

Transport

Network

N
ot

ifi
ca

tio
n

is

fo
rw

ar
de

d
to

 th
e

TC
P

la
ye

r

Packet is transmitted by
the source TCP layer

1

5

4
3

2

TCP packet with CWR flag

