
Ch02: Application
Layer

Group Exercise
Desktop/Mobile Applications

Video #1 (09 minutes 10 seconds)

Time Description

00:00 First node at UCLA

03:00 TCP/IP

Mobile phones make the Internet more accessible
and the Internet makes mobile phones more
useful

Vint Cerf
(the father of the Internet)

Video #2 (49 minutes)
Time Description

00:00 First node at UCLA

04:00 Use of ARPANet for military (US DoD)

05:00 Consolidation of telephone line network with satellite & radio network

10:00 Tim-Berners Lee World-Wide-Web (HTTP), Mosaic Browser, Netscape Communication

14:00 The birth of the FIRST mobile phone technology (Motorola 1983)

15:20 Confluence of The Internet & Mobile Phone

http://www.youtube.com/watch?v=VkmSjfPfXXI

Internet Layers
Application

Transport

Network

Link

Physical

Exchange messages between two applications

Data transfer between two processes

Data transfer between two hosts

Data (frame) transfer between two neighboring network elements

Bit transfer on physical medium

http://www.youtube.com/watch?v=E9NHy7MCGm0

Layered Structure
Application

Transport

Network

Link

Physical

Key benefit of the layered structure

Your application needs to know only the services provided by the
Transport Layer

Chapter 2 Objectives
● Investigate various application level protocols
● Two types of application interactions

○ client-server: Web, Email, Domain Name
○ peer-to-peer: BitTorrent

● Applications & Protocol
○ Web: HTTP
○ Email: SMTP, IMAP
○ Domain Name: DNS
○ BitTorrent: Peer-to-Peer File Transfer

A protocol defines:
● Message syntax & semantic
● Order of messages (sent/received)
● Actions of the sender (recipient)

upon sending (receiving) a message

Application
Interaction
Paradigms

Client-Server

Peer-to-Peer

Web Browser: HTTP(S)

Email: SMTP, IMAP, POP

Domain Name: DNS

File Sharing: BitTorrent

VoIP: Skype

Video on Demand: KanKan

Two interaction styles
Client-Server

● Server
○ Always-On Host
○ Have permanent IP address
○ Process that waits to be contacted

● Client
○ May be intermittently connected
○ May have dynamic IP addresses
○ Do not communicate directly with other

client, only with server
○ Process that initiates communication

Peer-to-Peer

● No always-on server
● Peers request service from other peers
● Peers provide service in return to other

peers
● Peers are intermittently connected and

may use different IP addresses each
they run

Socket
● Each socket is uniquely identified using a pair (IP addr & Port number)

○ IP address is associated with the (physical location) of the host
○ Port number is associated with which process within the host

● Recall that in the layered architecture
○ the application layer needs to know only how to interact with the transport layer
○ the transport layer is responsible for delivering data from one process to another process

● Use the socket library to interact with the transport layer
● Two services provided by the transport layer

○ TCP service: SOCK_STREAM
○ UDP service: SOCK_DGRAM

HyperText Transfer Protocol
HTTP

HTTP Versions
● HTTP 0.9: One line message (without header lines)
● HTTP 1.0: non-persistent connections
● HTTP 1.1

○ persistent connections (TCP connection stays open after a response)
○ chunked responses
○ client may send multiple asynchronous requests, but the server must respond in the

order requested

● HTTP 2.0:
○ on multiple requests, the client can specify the response order to be returned by server
○ the server may push unrequested objects to client

● HTTP 3.0: security & congestion control

HTTP 1.0 Non-Persistent Connection

Client Server

connect

accept

HTTP request

HTTP response

RTT

RTT

Connection closed by the server!!

2 RTTs per object

For N objects:
2N RTTs

HTTP 1.1 Persistent Connection

Client Server

connect

accept

HTTP req !

HTTP response 1

RTT

RTT

1 RTT for initial connection
1 RTT for each object

For N objects:
N + 1 RTTs

HTTP req #2

HTTP response #2

HTTP 1.1 Persistent Connection & Pipeline

Client Server

connect

accept

HTTP req !

HTTP response 1

RTT

RTT

1 RTT for initial connection
1 RTT for each object

For N objects:
2 RTTs + N transfer times

HTTP req #2

HTTP response #2

Browser Demo
Developer Tools ⇒ Network Tab

HTTP Cookies
● Why need cookies?

○ HTTP itself is stateless
○ But sometimes both the web server and the browser need to maintain some state

between transactions

● Implementation requires coordination between the web server and the
browser

○ The web server initiates by sending a cookie in its response
○ The client (your web browser) saves the cookie in its local storage and uses it in its

subsequent requests
○ Upon receiving the (same) cookie the server knows that the request(s) originate from the

same browser (potentially the same host and the same user)

Practical Use of HTTP Cookies
● RFC2109

○ Typical size limit of HTTP Cookies is 4 kilo bytes
○ A browser is expected to be able to accept 300 cookies

● What is it?
○ A small data generated by the website which is unique to you and your browser

● Practical use: good or bad?
○ the web server remember the history of your last visit
○ show a web content based on your past visits
○ Skip login authentication
○ Track your online activities
○ ...

https://www.rfc-editor.org/about/search/

Third Party Cookies
● You are visiting a website at http://abc.org

○ Document fetch from http://abc.org may include object fetched from http://xyz.com

● Your web client has to fetch objects from both abc.org and xyz.com
○ HTTP requests to http://xyz.com includes a header line “referred by” http://abc.org
○ Cookies set from http://abc.org is a “first party” cookie
○ Cookies set from http://xyz.com is a third party cookie

HTTP 1.1 vs. HTTP 2.0
● Multiple request in a pipeline
● Server responds in the order of the

request

● Multiple request in a pipeline
● Client may specified the priority of the

object in the requests
● Server responds in the order of priority

(which typically different from the order
of the requests)

● Server may also push unrequested
objects

http://abc.org
https://abc.org
http://xyz.edu
http://xyz.com
http://abc.org
http://xyz.com

Head of Line Blocking

Simple Mail Transfer Protocol
(SMTP)

Composing & Sending emails
● Sender: superman@here.com
● Recipient: spiderman@spiderweb.org
● Components required (at the time of “me” sending the email)

○ An email client run by “superman” (on a laptop/smartphone/desktop)
○ Mail server at spiderweb.org
○ (Optional) Mailer program at here.com

■ Acting as a server w.r.t to “superman”’s email client
■ Acting as a client w.r.t to spiderweb.org

● SMTP protocol is used when pushing emails to the mail server at
spiderweb.org

Sending emails option #1

spiderweb.org

SMTP

mailto:me@here.com
mailto:you@there.org

Sending emails option #2

spiderweb.org

SMTP

here.com

Store email

Retrieving & Reading emails
● Sender: superman@here.com
● Recipient: spiderman@spiderweb.org
● Option 1 (less common today): Email client runs on the same machine as

mail server spiderweb.org
○ The client program can directly open YOU’s mailbox (a flat text file)
○ The mail server at spiderweb.org does not have to be running

● Option 2: Email client runs a desktop/laptop different from mail server
there.org

○ The email client downloads the emails from mail server spiderweb.org using either IMAP,
HTTP, or POP

mailto:me@here.com
mailto:you@there.org

same host

Reading emails option #1 (less common today)

spiderweb.org

Reading emails option #2 (more common today)

spiderweb.org

IMAP, POP, HTTP

Web Email Demo: GVSU GMail
(Show Original Text Content)

Business/Developer Opportunity
● Incorporate Digital Signature (RSA or similar) to email client
● Recipient
● Prevent alteration of forwarded email
● Secure SMTP

Domain Name Server

DNS Messages
● RFC1035
● Additional Helpful Information

○ Mailbox Domain Name
○ Host Information (HINFO): CPU, OS (listed in RFC 1010)
○ MX Server Information (MINFO)

■ Server Name for Mailing List
■ Server Name for Receiving Mail Errors (“bounced back emails”)

Video Streaming
Requirements: steady stream of video frame rate (24 frames/second)

Format Frame Size Mega pixels/second*

Standard Definition 720 x 480 pixels 8.3

High Definition 1280 x 720 pixels 22

Full HD 1920 x 1080 pixels 50

2K 2560 x 1440 pixels 88.5

4K 3840 x 2160 pixels 200 Mbps

8K 7680 x 4320 pixels 800 Mbps

● these numbers are raw calculations, video data are not encoded and uncompressed
● 1 RGB pixel may require 24 bits (8-bit RED, 8-bit GREEN, 8-bit BLUE)

Video Streaming
● Issues

○ Network delay may vary, video frames may arrive at the client side at irregular intervals
○ Available bandwidth is much lower than the required bandwidth (even at 60% compression

ratio)

● Possible solutions
○ Use a buffer at the client side to accumulate incoming video frames
○ Delay the playback of the video until the buffer has “sufficient” number of rames

● Better solution
○ Encode the video to support multiple (transmission) bit rates
○ Let the client decide (at runtime) which bitrate it prefers
○ When less bandwidth is available, the client asks the server to switch to a lower bitrate

(and vice versa)

DASH: Dynamic Adaptive Streaming over HTTP
● The entire video file is divided into multiple chunks (N chunks)
● Each chunk is encoded at several different bit rates (R choices)
● Store each N x R files separately

○ Separate files and/or separate server locations
○ Use a manifest file to map the URL of each file

● At playback time, the client
○ Estimate the available bandwidth (Be)
○ Use HTTP to request one chunk at a time
○ When the available bandwidth changes, the client requests the next chunk encoded at a

different rate (lower or higher)

CDN: Content Distribution Networks
● To avoid a single server bottleneck, (file) contents are replicated across

multiple server (“geographically” spaced out)
● When a client request for a specific file, the (main) server responds with a

list of (clone) servers where the file is available
○ A DASH manifest file when this technique is used for video streaming

● Alternative to a list of clones, the content distribution can be implemented
by dynamically changing the DNS records (same host name but different
IP address)

● The client then picks the best (clone) server to pull the actual file from

