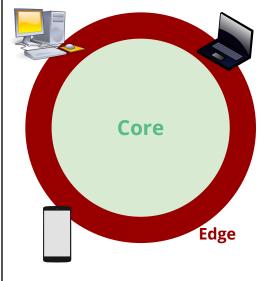


Communications: Comp-Comp vs. Person-Person



Protocols

Protocols defines the

- Format of messages
- Order of message exchanges (sent & received)
- Actions taken by recipient on receiving a message
- Actions taken by sender on transmitting a message

Network Edge vs. Network Core

Core: interconnected routers

Edge: hosts (computing nodes) connected to the network core

Two Primary Jobs of the Network Core

- Forwarding
 - **Local action** performed by *each individual router* within the Network Core, moving a packet from an incoming input link to appropriate output link
 - Mapping from input to output is done via a forwarding table

Routing

- **Global action** (by a routing algorithm) performed collectively by routers within the Network Core, determine the path(s) taken by packets from source to destination
- Output of a routing algorithm is used to update the individual forwarding tables of affected routers

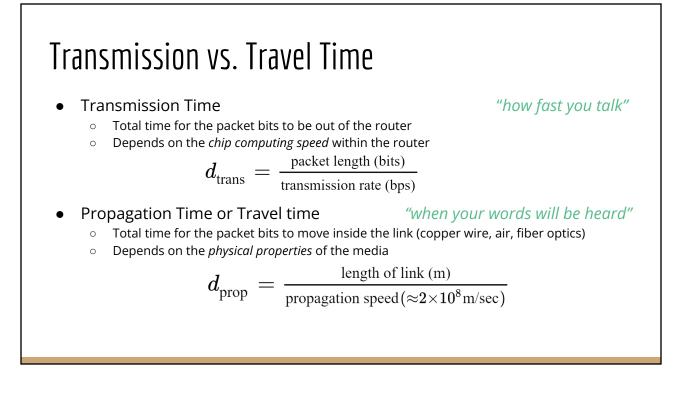
Turn-by-Turn Navigation Analogy

- YouTube video at minute 3:00
- **Routing** ⇒ Finding the best route from San Jose, CA to Southampton, MA
- Forwarding ⇒ "Micro" navigation instructions
 - "At the traffic light, make a right turn"

 - etc.

Sending "Data" From Source <mark>S</mark> to Destination D

- Circuit Switching
 - The data are "analog voice signals"
 - Used in old analog telephone network (prior to VoIP)
 - $\circ~$ A dedicated path connecting ${\color{black}{S}}$ to D must first be established
 - All voice data are transmitted on this same path
- Packet Switching
 - The data are digital bits
 - Used in "modern" computer network (packet switching was implemented in 1960s)
 - \circ No dedicated path required (as long as D is reachable from S)
 - Each packet may take a different path


Possible Issues with Packet Forwarding

- Recall that forwarding is a **local action** at a (specific) router
- Links connected to a router may operate at different speed (data transmission rate)
- Packet delay: when output link operates slower than its input link
 Incoming packets may have to be temporarily stored in an internal buffer
- **Packet loss**: when the internal buffer is full and incoming packets cannot be saved and must be dropped
- These are important concepts to understand Chapter 3 (Transport Layer)

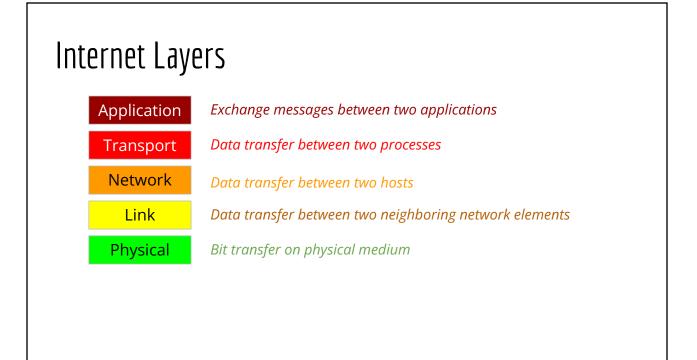

Packet Processing Time (at a router)

Four variables

- Bits parsing time (microseconds)
 - check integrity
 - output link lookup from the forwarding table
- Waiting in queue time before packet can be pushed out (*only this one can be zero*)
- **Transmission time**: the time needed for *all the bits* to be out of the router
- **Propagation time/travel time**: the needed for the bits to travel the output link (to reach its next router)

How fast is light speed?

Packet Queuing Time


- How long a packet must stay "inside" a router, depends
 - *R*: How fast the router can "consume" the packet (*bits/second*)
 - a: How frequently packets arrive at the router (*packets/second*)
 - *L*: How many bits in the packet (*bits/packet*)

traffic intensity =
$$\frac{\alpha \cdot L}{R}$$
 $\frac{\frac{packets}{sec} \cdot \frac{bits}{packet}}{\frac{bits}{second}} = \frac{bits arrival rate}{bits service rate}$

(Router) Traffic Intensity ρ = traffic intensity = bits arrival rate bits service rate ρ << 1: queuing delay is small ρ > 1: more arrival than the amount which can be served queuing delay is infinite packet loss very likely Online animation

How to Structure a Huge Network?

- Breakdown the design into multiple layers
- Implementation of services in a high(er) layer depends on services provided by the lower layer
- Internet Layers
 - Application layer: exchange **messages** between apps **SMTP, HTTP, IMAP**
 - Transport layer: data transfer from process to process
 TCP, UDP
 - Network layer: routing decisions for data transfer from host to host
 - Link layer: data transfer between neighboring network elements
 Ethernet, WiFi
 - \circ $\;$ Physical layer: bits transfer via physical medium (wire, air, fiber optics) $\;$

