
Free Space Management

54

Free Space Management

● Bit Vector/Bitmap
● “Linked-List” (Free List)

○ Simple
○ Grouping
○ Counting

● The “list” can be implemented as a tree (for faster search)

55

Bitmap / Bit Vector / Array of bits
● Each block is represented by 1-bit

○ 0 = free, 1= used

● Number of bytes for bitmap = ⅛ number of total disk blocks
● Fast to locate free blocks: use bitwise operations

○ Searching a particular block can be

● Require extra space to maintain free blocks

56

BitVector / Bitmap

B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

free used

1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 01 1 1 1 1 1 0

25 bits

25-block hard drive requires 25-bit bitmap (4 bytes)

57

Linked-List of Free Blocks / Free List

● Improvements over bitmap technique
○ Chain all the free blocks together
○ The superblock keeps the “head” and “tail” of this list

● Place the “next” pointer inside (at the end) of the freeblocks
● Searching for N free blocks requires reading N blocks in the chain (too

many disk I/O)

58

Simple Linked-List

B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24
free used

Cost of searching N free blocks = O(N)

59

1 2 12 13 14

22 23 24 25

With Grouping

Packed Linked-List (Group of Block #)

B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

free used

2
12
13
14
22
23

24
25

B1 B23

Grouping:
● Each free “group block” stores N pointers
● The first (N-1) are pointers to the free blocks
● The last pointer points to the next “groupblock”

60

1 2 12 13 14

22 23 24 25

Without Grouping

Linked-List & (Group & Range / Count)

5
6
7
8
9
10
11

B2

62

Free blocks : 2, 5, 6, 7, 8, 9, 10, 11, 34, 35, 36, 37, 38, 39, 40, 64, 72, 81, 82, 83, 84, 85, 97,103, 108,….

Free blocks (range) : 2, 5–11, 34–40, 64, 72, 81–85, 97,103, 108,….

Free blocks [count] : 2[1], 5[7], 34[7], 64[1], 72[1], 81[5], 97[1],103[1], 108[1],….

34
35
36
37
38
39
40

B11

64
72
81
82
83
84
85

B40

97
103
108

B85

 2 [1]
 5 [7]
34 [7]
64 [1]
72 [1]
81 [5]

97

B2

 97 [1]
103 [1]
108 [1]

B97

Free blocks (range) : 2–2, 5–11, 34–40, 64–64, 72–72, 81–85, 97–97,103–103, 108–108,….

Improvement on size of linked list: 25 ⇒ 4 ⇒ 2

Upgrade from list to tree?

65

Transform List into a Tree

42

13 32 63

(B2,1)

(B8,1)

(B10,2)

(B13,1)

(B18,8)

(B28,3)

(B32,1)

(B36,1)

(B40,2)

(B42,3)

(B47,2)

(B50,7)

(B63,4)

(B70,3)

(B79,4)

Tree: search O(log N)

66

(B2,1)

(B8,1)

(B10,2)

(B13,1)

(B18,8)

(B28,3)

(B32,1)

(B36,1)

(B40,2)

(B42,3)

(B47,2)

(B50,7)

(B63,4)

(B70,3)

(B79,4)

List: Search O(N)

Data Recovery

68

A filesystem essentially holds (at least) three separate trees:

● A tree of files and directories (user-owned)
● A tree of free data blocks (maintained by OS)
● A tree of free index blocks (maintained by OS)

These trees originate from the superblock (or some kind of “special” block)

Any updates to the FS must guarantee the three trees are in sync!

Critical On-Disk Data Structures

70

Low-Level Operations in Linux Ext(2|3|4)

To write a file into a (Linux) filesystem

1. Allocate new data blocks
a. Update the list of free blocks in the superblock

2. Allocate a new inode block
a. Update the list of free inode block in the superblock

3. Write the file contents into the data blocks
4. Update the inode block: file metadata and block pointers

When the above sequence does not run to completion (i.e. by power failure),
the filesystem records only a partial (inconsistent) data/metadata of your file

72

Database Transactions & (Intent) Logs

● To guarantee data integrity
● Multiple operations that update different parts of the DB are performed

under one transaction: “BEGIN TRANSACTION” and “COMMIT”/”ROLLBACK”
○ In addition to changing the data, a transaction also logs the intended changes (insert,

delete, update)
○ The log must be securely saved PRIOR TO the modification of the actual data

● At recovery time, the contents of the log are compared with the actual
data and unfinished transactions can be recovered

73

Transaction & Logs: Database Example
Transfer $500 from Account-A to Account-B

Account-A Account-B

Current balance 10,000 2,000

Expected balance 9,500 2,500

Update, A, 10000, 9500
Update, B, 2000, 2500

Log Format: action, target, oldval, newval

Account-A Account-B Explanation Required Action

9,500 2,000 Failed to update B’s account Update B, Delete Log

10,000 2,500 Failed to update A’s account Update A, Delete Log

10,000 2,000 Failed to update both Update Both, Delete Log

9,500 2,500 Excellent Delete Log

Several Possible States (after a crash)

74

Journaling / Log-Structured FS

● Every modification to the FS must be associated with a log entry
○ Log entry format: timestamp, action, blockid, oldvalue, newValue
○ Log entries are created for ALL types of modification (including inode and superblock)

● The log must be saved FIRST before the actual block updates take place
● Delete the log after the successful data block updates
● Recovery after system crash: use the existing log entries to restore FS

75

Log-Structured FS: Advantages & Issues

● Performance Improvement (for the user program)
○ As soon as the log entries are safely written, the operation can be considered complete
○ The user program does not have to wait until the data blocks are updated
○ The system can complete the rest of the operations as if it is “recovering” from a “crash”

● Potential issues
○ Log entries requires lots of space
○ Log entries themselves are corrupted ⇒ use checksum to verify log entries

76

timestamp action blockId old block content new block content

4 bytes 1 byte 4 bytes 512 – 4096 bytes 512 – 4096 bytes

COW: Shorter Log Entries

● Copy-on-Write: when a block is updated, don’t overwrite it, but create a
copy

○ Write the updated contents to a new block, temporarily keep the old block
○ The COW strategy also applies to inode blocks (not only to data blocks)

● Advantage: the disk keeps both old content and updated content
● Journal entries can be made MUCH shorter

77

timestamp action blockId old block content new block content

4 bytes 1 byte 4 bytes 512 – 4096 bytes 512 – 4096 bytes

timestamp action oldBlockId

4 bytes 1 byte 4 bytes

newBlockId

4 bytes

1K to 8K bytes (without COW)

Only 13 to 25 bytes (with COW)

Copy-on-Write (on disk blocks)
block mapinode map

inode

data blockdata blockdata block

block mapinode map

inode

data blockdata blockdata block data block

block mapinode map

inode

data blockdata blockdata block data block

inode

#1. Initial data
#2. copy

target data
block

#3. copy
metadata

#4. update
superblock

Old copy may be
retained for R/O
access

superblock

block mapinode map

inode

data blockdata blockdata block data block

inode

78

Mark for
lazy delete

No COW: Update ⇒ Overwrite data blocks
With COW: Update ⇒ Redirect pointers

79

(doesn’t it look like git?)

Recovery & Consistency Check

● Superblock, inode, files and directory structures must agree with each
other

● A filesystem persistently stores three lists (or trees)
○ The tree structure of files/directories
○ A tree/list of free data blocks
○ A tree/list of free index blocks

● The head (root) pointer of these trees are kept in the superblock

80

ZFS

85

ZFS = Filesystem
+ Volume Manager
+ Revision Control

86

ZFS

● 128-bit block address
○ For sector size of 512 bytes, total disk capacity is 2128 x 512 = 2128 x 29 = 2137 bytes

● Index nodes are generated on demand. What is the advantage?
○ UFS preallocates index nodes in the superblock (at the time of FS format)

● UFS superblocks = ZFS uberblock
● COW (Copy-On-Write)

○ This strategy allows storing multiple revisions of a file
○ Snapshots = R/O copies of older revisions
○ Clones = R/W copies of a dataset (similar to a git branch)

87

How much is 2137 bytes?

● 2137 bytes = 2137 x 23 bits = 2140 bits ≈ 1042 bits
● Estimated number of atoms on our earth = 1050

● If we were able to store one bit as one atom, our hard drive would have
been 1/256 the size of the earth!

88

ZFS Storage Pools

● Design goal: Increasing storage capacity should be as easy as increasing
RAM size

○ ZFS allows sysadmin to add new disks on-demand (LVM)

● ZFS virtual devices (vdevs): block-oriented storage (HD, SSD, NVRAM, …)
● Virtual devices are managed into Storage Pools

○ Solve the “partition too small” problem

● Other FSs use 3rd party logical volume managers to “expand” capacity

89

ZFS Data Integrity & Error Checking

● Design Objectives
○ ZFS should be self-healing
○ Filesystems should not require “manual” periodic checking using fsck(8)

● ZFS computes the hash value of (almost) all of its data
○ The hash value of a block is stored in a different block

■ A parent block stores the hash of its children
■ A child block stores the hash of its parent

○ Merkle Tree

90

