
Disk Block Allocation

17

[Disk] Data Block Allocation

● Data on device are stored in blocks or
clusters of blocks

○ HD: common block size 512B (but also larger
blocks upto 4K)

○ SSD: page size 2K - 16K

18

File Allocation Strategies

● Problem to address: files may grow/shrink
● Static Allocation: pre-allocate a fixed number of blocks (bigger than the

requested file size to allow room for growth)
● Dynamic Allocation

○ Contiguous
○ Chained/Linked
○ Indexed

● Previous concepts in memory allocation apply to disk block allocation

19

Dynamic Allocation: Contiguous

● Assign a set of contiguous blocks to a file at the time of creation
● The directory entry contains: the starting block and number of blocks
● Block allocation/deallocation as the file grows or shrinks?
● Issue: disk (external) fragmentation
● Effect on disc arm motion?

20

Contiguous Allocation

File Start
Block

Number of
Blocks

one.txt 3 9

two.pdf 15 7

B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

How to allocate a new file that requires 5 contiguous blocks?

Unused blocks

21

Contiguous Allocation: Defragmentation

B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

Unused blocks

B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

defragmentation

22

Dynamic Allocation: Linked/Chained

● Reserve a few bytes in each data block for a pointer to the next block
● The directory entry holds the starting block and the number of blocks (or

the last block)
○ Head and tail of a linked list

● No external fragmentation
● Random access is impossible

○ Accessing the Nth block requires reading the first (N-1) blocks

● Wasted space in each block for the “next/chain” pointer

23

Linked/Chained Allocation

File Start Block Last Blocks

one.txt 5 2

two.pdf 13 16
B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

One.txt: B5, B3, B11, B6, B10, B2
Two.pdf: B13, B8, B18, B9, B15, B24, B16

Effect on disk arm motion?

24

Improved Linked/Chained Allocation

● Extract all the “next” pointers from the data disk, place them in a
designated disk blocks

● DOS FAT: File Allocation Table
○ FAT for the entire file system is stored in (small number of) contiguous disk blocks
○ FAT16: 16-bits (2 bytes) per entry => 1024 entries can fit into 4 blocks of 512 bytes

● Random Access performance is improved
○ Reading the Nth block requires only linear traversal (of N-1 links) within the FAT (not the

actual data disks)
○ Fewer disk I/O compared to pure chained/linked allocation

25

Improved Linked/Chained: MS-DOS FAT

File Start Last

one.txt 5 2

two.pdf 13 16 B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

One.txt: B5, B3, B11, B6, B10, B2
Two.pdf: B13, B8, B18, B9, B15, B24, B16

0

-1

11

0

3

10

0

1

2

3

4

5

6

7

8

9

2

6

0

0

0

0

10

11

12

13

14

15

16

17

18

19

24

File Allocation Table (FAT12, FAT16, FAT32)Directory Entries

FAT must be saved on the disk

26

Indexed Allocation

● MS-DOS FAT can be a bottleneck of file access; all updates to any files in
the FS must update one global copy of FAT

● Solution: each file should hold its own index block(s)
○ The index block records the data block addresses (pointers) used by the file contents

● Directory entry = pair <file name, address of index block>
● Random (non-sequential) access is possible

Many filesystems today use some variant of index blocks.

27

Indexed Allocation (Recall “page table” in VM)

File Index Block

one.txt 4

two.pdf 17
B1 B2 B3 B5B4

B6 B7 B8 B10B9

B11 B12 B13 B15B14

B16 B17 B18 B20B19

B21 B22 B23 B25B24

One.txt: B5, B3, B11, B6, B10, B2
Two.pdf: B13, B8, B18, B9, B15, B24, B16

Directory Entries
5
3
11
6
10
2

13
8
18
9
15
24
16

B4

B17

28

Indexed Allocation: Limitations

● The maximum file size is limited by the number of pointers that can fit
into one index block

○ 512-byte blocks (29)
○ 4-byte pointers (32-bit address)

■ 512/4 = 128 pointers per block (27)
○ Total disk capacity 232 x 29 = 241 = 2 Terabytes
○ Max file size 27 x 29 = 216 = 64K bytes

● To store larger files
○ Link several index blocks together
○ Multi-level index
○ Combined: use both direct index and multilevel indices (Unix File Systems)

31

Which Allocation Algorithm?

32

Block Allocation File Growth Fragmentation Direct/Random Access

Contiguous May require relocation Yes O(1)

Chained/Link Easy No O(N)

Indexed Limited by size of index
block No O(1)

Multi-level Indexed Limited by depth of
index block hierarchy No O(log depth)

depth is constant for UFS

