Filesystem
Interface

Popular File Systems

e DOS/Windows
o FAT (FAT12, FAT16, FAT32, VFAT, NTFS

e Linux
o Ext, Ext2, Ext3, Ext4,

e MacO5SX Why do we need these filesystems?
o HFS, HFS+

e And many more
o ZFS, BTRFS

o IPFS (Inter-Planetary File System 2015, Stable Release Aug 2019)

User Files to Data Blocks

;1 robin.jpg

robin.png

robin.tiff

robin.bmp

— -y

—

Windows

Linux

OS X

FAT16
FAT32
VFAT
NTFS
Ext2
Ext3
Ext4
ZFS
HFS

Filesystem Interface

/ provid

\

—— o o - = o =

ed by OS

g

Western

Digital

Maxtor

Logical vs. Physical Representation

Fixed size disk blocks

Analogy:
contiguous logical address space vs. non-contiguous arrangement in physical RAM

(User) Files

VS.

Records, database,
File formats

Binary vs. text files
JPG, PNG, TIFF, ZIP,

C++ source, ELF executable, ...

(Storage) Devices

Block of bytes

Track Number, Sector Number,
Error Checking/Correction
Parity Block

DVD, IDE Drive, USB, CD-ROM, ...

OS: Filesystem Interface

FAT32, VFAT, Ext2, Ext4,
ZFS, HFS, NTFS,

Cloud Storage (Remate Devices)

& OneDrive O

iCloud

& Drophox p=

Google Drive

Techniques in memory management are also
applicable to filesystems

File services expected from the 05/

Functionalities / Services of a File System

e Assembly instructions related to I/0 operations are typically privilege
instructions

e Basic Unix system calls (CRUD operations)

o File operations: open(), close(), read(), write(), seek(), unlink()
o Directory operations: opendir(), readdir(), ...

e Persistent Storage

o With(out) encryption
e Access Control: Sharing & Protection
e Data Recovery

What does the 05 do?

unsigned char buff[2048];
int fd = open(s)5

while () {
int nbytes = read (fd, buff, 2048);
lseek (fd,)5

}
close (fd);

FS Related Data Structures?

e Data structures in user processes?
o Per-process open-file table

e Data structure(s) used by OS?
o System wide (global) open-file table

e Open ashared file?

e Locations

o On Disk Data Structures (persistent)
o On RAM (transient): initialized at boot time by reading on disk data structure

Access Methods

Sequential Access O(N)

File Access Methods Direct/Random Access o(1)

Indexed Sequential Access | OUogN)

Variable vs. Fixed-Length Records

#tinclude<iostream>

int main() {
cout << “Hello world” << endl;
return 0;

}

In storage device: sequence of bytes

20 chars
2 chars
14 chars
31 chars
13 chars
3 chars

L e e o
##tinclude<iostream>« -+« .-

Cursor “next line” = advance 25 bytes

25
25
25
25
25
25

chars
chars
chars
chars
chars
chars

et e e e L B et e s T ey - R

#include<iostream><<int main() {<

cout << “Hello world” << endl;<

return 0;</}<

Sequential Access Method

e Datain file are processed sequentially
o To move the file pointer to offset 10,000, the program must read the first 10,000 bytes
o Variable-length logical records

e Importantinterfaces: read_next(___) andwrite_next(__)

e OS system calls to skip the file pointer backward/forward
o Interface: skip(num_bytes) or lseek() = O(N)operation
o Skip # jump: can’t “jump” to a specific logical record

e The cost of inserting new data into a file?

o atthe end of the file?
o anywhere else in the file?

Direct/Random Access Method

e Fixed-length logical records
e File pointer can “jump” to anywhere within the file

e Interfaces:
o Sequential access: read_next(), write_next()
o Random access: position_file(rec_number): position the file pointer to a specific
record = O(1) operation

Why Indexed Sequential

300-page hook
100 words /page

Cost of locating one word?

Word search in a book

e Total 500 pages
e 100 words/page

e Total 50,000 words to search
o Asequential search costs an
average of 25,000 comparisons
(across all 500 pages)

T ST PR Al i OFRT R U N oS =V &
&
@ N\
S
N
&
Ord Searcn ind DooK + INAex rage o
S
S
U — : N .
L o mmﬁ“ @h&\\\\\&m R e O N & QS
T e e e (8T8
SENS T S O \\&\ :
\v.:m W e P @ g™ N
e Total 500 pages w\ s N L RS .
D5 e \Yiﬁ\l & f Books, T} e "@'#t{??m [‘?ﬁ? R
D)r,,,,,,.,\ ks, The, 32,133) S olle L, C
o 100 words / page = gﬁ Printing Review, 20n., 31 Studio, The, 231., 31
P 1 O index pages o Printing Types, their History , Forms and Sweynheym, 16
— S Use, 25 Symons, A.J. A., 18
LA\ y gae)
. Processes, New, /
@) 40 WO I"dS / IndeX page l \ Pz.lltcr. (‘}v_@nt\j\]}‘\'l, 12 'I’;'nz[v[ci]'[/u',ll()
. . T]orp, OSCP 1, 20, 21, 31, 33
o Total 400 indexed words EX Ravilious, Eric, 20 Traveller’s Library, 37
S h d "'\Q'- 3 Ricketts, Charles, 16, 18 Tributes to Edward Johnston, 22n.
® earc ad WOr .@ Ridler, Vivian, 18 Tt Tschichold, Jan, 38, 40
Ny 2 Rogers, Bruce, 24, 28, 38 Type-faces, New, 28, 34, 36
0 S t | h th 10 i d : g4 Roots of the Mountains, il‘lu, 19];,;()g,;;;,y (Eric Gill), 34
equential searcn witnin Inaex @' Royal College of Art, 23 Fogiaranty (Jowinel) oo
H i Ruskin, John, 9, 11
pages = avg 200 comparisons e é\' Rutherston, Albert, 32, 34 Updike, D. B., 24, 25, 28
o Sequential search in the target page = } ‘Q : Sl MM, 7. Vale Press, 16
avg 50 comparisons & e e e el Warde, e, 1,2
. b - ardrop, James, 221n., 23
o Total 250 comparisons across only 11 . ex® ki Ve Dlalisheont

pages

Shaw, G. Bernard, 12, 13, 14

Shenval Press, 30

Signature, 39

Significant Period of Our Printing, A,
21n.

Simon. Herhert and Oliver 21 2>

Week-End Book, The, 29
Westminster Press, 21, 39
Whistler, James McN., 18
Whistler, Rex, 35

Wilde, Oscar, 18

Index (+Sequential) Access Method

e Index provides a random access capability to quickly reach the vicinity

of the desired record
o The desired record itself must be searched in a sequential manner
Words index in a printed textbook
e Components required: data file + index file

o Index file contains key and a pointer to a “small section” in the main file
o Index file is search to find a key equal (or close) to the desired key value
o Search continues (sequentially) within the “small section” as directed by the pointer

e Example: B+ Trees

Access Methods

Sequential

Direct/Random

Indexed
Sequential

Interfaces

read_next (toBuff)
write_next (fromBuff)
skip (num_bytes)

skip_to (record_number)
read_next (toBuff)
write_next (fromBuff)

find(key)
read_next (fromBuff)
write_next (fromBuff)

Data Layout

Variable length records

Fixed length records

Tree structure &
Variable length records

o(1)

O(log N)

Data Structures & Algorithms: B Trees

32

39

34

40

36

90

95

106

49 99 79
50 66 85
53

97

112

Indexed Sequential Access (Single-Level Index)

block 5634

"abram", 877120

"crawfor",1641
"dulimar",651277<

index block(s)

A hypothetical password file stored in 1
index block and 3 data blocks

"abram", OIQHWEKJH
"andy", LKLLJASD123
"april", JHFEUW12J
"azhari", JF0123HF
"barley",MND67234

block 877120

/ "crawfor", 2312wer
"crayton",hsdf67723

pd

"dvorak",h723UUF

block 1641

Assume block capacity:
e 30 key-value pairs or

ndulimar", whatever block 651277 ° 20 userid-password pairs

Max storage: 600
user/password pairs

Indexed Sequential (Multi-level Index

block 43111

"abram", 5634

"walter™, 87153 “~\\\

level 1 index blocks

Assume block capacity:
e 30 key-value pairs or
e 20 userid-password pairs

900 (= 30%) key-value pairs
Max storage: 900 x 20 = 18,000
user/password pairs

level 2 index blocks

"abram", 877120
"crawfor", 1641
"dulimar", 651277 =

block 5634

"abram", OIQHWEKJH
"andy", LKLLJASD123
"april", JHFEUW12J
"azhari",JF0123HF
"barley",MND67234

3locks)

block 877120

block 651277

"dulimar",whatever
"dvorak", h723UUF

—1
"walter", 345881

"zohor", 77345 ——]

block 87153

block 77345

block 345881

"walter",JDF63YY

’////———.> "zohor", 2312wer

"zynga",hsdf67723

"whalon",777yyTT

