
Filesystem
Interface

Popular File Systems

● DOS/Windows
○ FAT (FAT12, FAT16, FAT32, VFAT, NTFS

● Linux
○ Ext, Ext2, Ext3, Ext4,

● Mac OS X
○ HFS, HFS+

● And many more
○ ZFS, BTRFS
○ IPFS (Inter-Planetary File System 2015, Stable Release Aug 2019)

Why do we need these filesystems?

User Files to Data Blocks

robin.jpg

robin.png

robin.tiff

robin.bmp

Windows

Linux

OS X

FAT16

FAT32

VFAT

Ext2

Ext3

Ext4

ZFS

HFS

NTFS

Western
Digital

Seagate

Maxtor

Filesystem Interface
provided by OS

Logical vs. Physical Representation

Analogy:
contiguous logical address space vs. non-contiguous arrangement in physical RAM

1 2

6 1

2

6

3
3

4

4

5

5

Fixed size disk blocks

(User) Files vs. (Storage) Devices

● Records, database, ….
● File formats
● Binary vs. text files
● JPG, PNG, TIFF, ZIP, ….
● C++ source, ELF executable, ...

● Block of bytes
● Track Number, Sector Number,
● Error Checking/Correction
● Parity Block
● DVD, IDE Drive, USB, CD-ROM, ...

FAT32, VFAT, Ext2, Ext4,
ZFS, HFS, NTFS,

OS: Filesystem Interface

Cloud Storage (Remote Devices)

Techniques in memory management are also
applicable to filesystems

Memory Manager
● transient data in memory
● Processes access the physical RAM without OS intervention

Filesystem Manager
● persistent data on “disk”
● Process accesses the storage device via system calls

File services expected from the OS?

Functionalities / Services of a File System

● Assembly instructions related to I/O operations are typically privilege
instructions

● Basic Unix system calls (CRUD operations)
○ File operations: open(), close(), read(), write(), seek(), unlink()
○ Directory operations: opendir(), readdir(), ...

● Persistent Storage
○ With(out) encryption

● Access Control: Sharing & Protection
● Data Recovery

What does the OS do?
unsigned char buff[2048];

int fd = open(______, ____);

while (____) {

 int nbytes = read (fd, buff, 2048);

 lseek (fd, _____);

}

close (fd);

FS Related Data Structures?

● Data structures in user processes?
○ Per-process open-file table

● Data structure(s) used by OS?
○ System wide (global) open-file table

● Open a shared file?
● Locations

○ On Disk Data Structures (persistent)
○ On RAM (transient): initialized at boot time by reading on disk data structure

Access Methods

File Access Methods

Sequential Access

Direct/Random Access

Indexed Sequential Access

O(N)

O(1)

O(log N)

Variable vs. Fixed-Length Records

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+
#include<iostream>↵↵int main() {↵ cout << “Hello world” << endl;↵ return 0;↵}↵

#include<iostream>

int main() {
 cout << “Hello world” << endl;
 return 0;
}

20 chars
2 chars
14 chars
31 chars
13 chars
3 chars

----+----1----+----2----+
#include<iostream>·······
·························
int main()···············
··cout·<<·”Hello”;·······
··return·0;··············
}························

25 chars
25 chars
25 chars
25 chars
25 chars
25 chars

In storage device: sequence of bytes

Cursor “next line” = advance 25 bytes

Sequential Access Method

● Data in file are processed sequentially
○ To move the file pointer to offset 10,000, the program must read the first 10,000 bytes
○ Variable-length logical records

● Important interfaces: read_next(___) and write_next(___)
● OS system calls to skip the file pointer backward/forward

○ Interface: skip(num_bytes) or lseek() ⇒ O(N) operation
○ Skip ≠ jump: can’t “jump” to a specific logical record

● The cost of inserting new data into a file?
○ at the end of the file?
○ anywhere else in the file?

Direct/Random Access Method

● Fixed-length logical records
● File pointer can “jump” to anywhere within the file
● Interfaces:

○ Sequential access: read_next(), write_next()
○ Random access: position_file(rec_number): position the file pointer to a specific

record ⇒ O(1) operation

Why Indexed Sequential?

500-page book
100 words/page

Cost of locating one word?

Word search in a book

● Total 500 pages
● 100 words/page
● Total 50,000 words to search

○ A sequential search costs an
average of 25,000 comparisons
(across all 500 pages)

● Total 500 pages
○ 100 words / page

● 10 index pages
○ 40 words / index page
○ Total 400 indexed words

● Search a word
○ Sequential search within 10 index

pages ⇒ avg 200 comparisons
○ Sequential search in the target page ⇒

avg 50 comparisons
○ Total 250 comparisons across only 11

pages

Word search in a book + Index Page

Index (+Sequential) Access Method

● Index provides a random access capability to quickly reach the vicinity
of the desired record

○ The desired record itself must be searched in a sequential manner
Words index in a printed textbook

● Components required: data file + index file
○ Index file contains key and a pointer to a “small section” in the main file
○ Index file is search to find a key equal (or close) to the desired key value
○ Search continues (sequentially) within the “small section” as directed by the pointer

● Example: B+ Trees

Access Methods

Interfaces Data Layout Cost

Sequential read_next (toBuff)
write_next (fromBuff)
skip (num_bytes)

Variable length records
O(N)

Direct/Random skip_to (record_number)
read_next (toBuff)
write_next (fromBuff)

Fixed length records
O(1)

Indexed
Sequential

find(key)
read_next (fromBuff)
write_next (fromBuff)

Tree structure &
Variable length records O(log N)

Data Structures & Algorithms: B＋ Trees
42 87

25 37 55 74 92 99

3

7

16

25

32

34

36

37

39

40

42

49

50

53

55

59

66

74

79

85

87

90

92

95

97

99

106

112

Indexed Sequential Access (Single-Level Index)
"abram", OIQHWEKJH
"andy",LKLLJASD123
"april",JHFEUW12J
"azhari",JF0123HF
"barley",MND67234
...
...
...

"crawfor", 2312wer
"crayton",hsdf67723
...
...
...
...
...
...

"dulimar",whatever
"dvorak",h723UUF
...
...
...
...
...
...

"abram", 877120
"crawfor",1641
"dulimar",651277
...
...
...
...
...

block 877120

block 1641

block 651277

block 5634

index block(s)

data blocks

A hypothetical password file stored in 1
index block and 3 data blocks

Assume block capacity:
● 30 key-value pairs or
● 20 userid-password pairs

Max storage: 600
user/password pairs

Indexed Sequential (Multi-level Index Blocks)

"zohor", 2312wer
"zynga",hsdf67723
...
...
...
...
...
...

"dulimar",whatever
"dvorak",h723UUF
...
...
...
...
...
...

"abram", 877120
"crawfor",1641
"dulimar",651277
...
...
...
...
...

block 877120

block 77345

block 651277

block 5634

level 2 index blocks

"walter", 345881
...|
...
...
"zohor", 77345
...
...
...

block 87153

"abram", 5634
...
...
"walter",87153
...
...
...
...
...

block 43111

level 1 index blocks

"walter",JDF63YY
"whalon",777yyTT
...
...
...
...
...
...

block 345881

"abram", OIQHWEKJH
"andy",LKLLJASD123
"april",JHFEUW12J
"azhari",JF0123HF
"barley",MND67234
...
...
...

Assume block capacity:
● 30 key-value pairs or
● 20 userid-password pairs

900 (= 302) key-value pairs
Max storage: 900 x 20 = 18,000
user/password pairs

