Memory Allocation for Kernel

e Kernel memory must be allocated from a separate pool, different from the
pool used user processes

e Most kernel data structures must stay resident in RAM all the time (should
not be paged out)

e Most kernel data structures must be allocated contiguously in RAM (must

be accessed without going through the virtual memory interface)
o Pages = frames

116

Strategies for Kernel Mem Allocation

e Buddy System (power-of-two allocator)
o Always allocate to the nearest (larger) power of two memory size
m Request 15 MB => Allocate 16MB
m Request 17MB => Allocate 32MB (too much wasted space)
m May suffer large internal fragmentation

e Slab Allocation (better than Buddy)

117

Buddy Allocation / DeallpG(B:ation |

A requests 200MB

[A+SoMBunsed] | |
B requests 60MB

[+ sowB unised ™ NN o | 7265 | |

C requests 80MB
|

Release B

C + waste 512MB |
Release A
| 256MB | 128mB 512MB |
D requests 300MB

| |
Release C
Release D

118 |

Slah Allocation

One slab = N physically contiguous pages/frames

One cache = M slabs

One slab holds K kernel objects (kernel data structures) of the same type
o Caches for file descriptors, caches for semaphores, caches for process X, ...

o Number of KOs per slab is determined from the size of KO: multiple of page size and
minimizes wasted space

e Allocations/deallocation are handled in units of slab
o One “slab_alloc” call pre-allocates K kernel objects
o Used by Linux, FreeBSD

119

Slah States

Full: all of the kernel objects within the slab are assigned,
Empty: all of the kernel objects are free

Partial: some free, some assigned

120

S

Assume page size 4K

2.5K obj

Zilied 25K obj |

| 25K obj
2.5K obj

[610Bob |

[610Bobj | [610B obj
[610Bobj | | 610Bobj

610 B obj

Cache A

Cache B

ab Allocation: One Cache per Kernel Object Type

e
I—|7K obj Cache C

Cache A:
8 x 2.5K = 20K => 5 contiguous pages

Cache B:
20 x 610bytes = 12200 bytes => 3 cont pages (and
88 wasted space)

Cache C: 11
4 x 7K = 28K => 7 contiguous pages

Slab Allocation into Contiguous Pages

2.5K obj ! 2.5K f 2.5K obj

obj 4Kpage | ree obj

2.5Kobj f---eeeee 2.5K free 2.5K free

2.5K obj 4K page | o 2.5K free 2.5K obj
© | ®

S g 25Kobi | 2.5K free 2.5K obj
IR 4Kpage | G

c% d 25Kobj | | g 2.5K free 2.5K obj
© 1)

2.5K free 2.5K free

2.5Kobj [~77777TTTTT 2.5K free 2.5K obj
4K i
2.5K obj page 2.5K free 2.5K free
full empty partial
slab slab slab

8 x 2.5K = 20K = 5 x 4K

For the above example: cache grows/shrinks 5 pages at a time

05 Examples

Linux Page Replacement

e LRU 2Q (LRU clock approximation with two queues)
o Inactive_list: pages which are not referenced (ref-bit ZERO)
o Active_list: pages which are referenced (ref-bit ONE)

e Working Set
e Global replacement strategy

124

Windows Page Replacement

e Working Set
e LRU with local replacement strategy

125

