
Counting-Based Page Replacement
Algorithms

84

Counting-Based Algorithms
● Add a reference counter (in each row of the page table)

○ The HW has to increment the counter by 1 on each memory reference.
○ Expensive hardware

● Least Frequently Used
○ Victim selection: find the page with the smallest counter value
○ Reasoning: actively-used pages will get high count
○ Problem: pages with high count may become too sticky (hard to replace)
○ Solution: periodic decay (by OS) by right shift (div by 2) the counter value

● Most Frequently Used
○ Victim selection: find the page with the largest counter value
○ Reasoning: low count implies the page is just recently loaded, it may be needed again in

the short future

85

1

More efficient swapping techniques

86

Overhead of Page Replacement
● Two I/O operations to/from the paging disk

○ Swap out: read the content of victim frame (RAM) to the paging disk
○ Swap in: load the requested frame from the paging disk to RAM

● Any techniques to avoid double I/O operations would improve the overall
page response

87

2

Page Buffering Options
● Lazy swap out (versus immediate swap out)

○ Swap out are postponed (and perhaps performed in batch), only mark the frame as
“swapOutNeeded”

○ The swapper maintains a pool of these frames,, swap in requests are handled immediately
by restoring a frame from this pool

● Periodic Cleaning of “dirty” pages
○ When the paging disk/swap disk is idle write modified/dirty pages to the paging disk (thus

making them “clean” again) in batch

● Tagged Pool of Free Frames
○ Tag each free frame with the most recent page that occupies the frame
○ When a swap in to bring in page Z is being serviced and the frame associated with Z has not

been reused, then no actual I/O operation is needed to load the page

88

Thrashing
&

 Dynamic Page Replacement

89

3

VM Paging Algorithms

90

Paging
Algorithms

Replacement
Policy

Allocation Policy

Local Replacement

Global Replacement

Equal Allocation

Proportional Allocation

Replacement
Algorithms

Static: FIFO, LRU, Optimal

Dynamic:
Working Set, PF Frequency
Number of frames may change over time

Victim page is selected
from your own process

Victim page is selected
from another process

Thrashing

93

4

CPU, Memory, I/O Devices
CPU

Data/Control bus

Address bus

Memory Controller DMA & I/O Controller

RAM Chip I/O Device

94

On modern computers, all I/O
operations are handled by DMA
(not by CPU)

Thrashing: Circular Events

95

Low CPU utilization &
High swap disk I/O

To increase CPU
utilization, OS loads more
NEW processes into RAM

OS must steal
memory frames from
EXISTING processes

Higher page faults on
existing processes

● OS spends more to handle
page faults (lower CPU
utilization)

● Higher swap disk I/O

Global page
replacement

(Starts here)

5

Thrashing

96

degree of multiprogramming
(number of concurrent processes)

CP
U

 u
ti

liz
at

io
n

thrashing

Thrashing: Problems and Solutions

97

Low CPU utilization &
High swap disk I/O

To increase CPU
utilization, OS loads more
NEW processes into RAM

OS must steal
memory frames from
EXISTING processes

Higher page faults on
existing processes

● OS spends more to handle
page faults (lower CPU
utilization)

● Higher swap disk I/O

Global page
replacement

● Quick Solution
○ Don’t bring in too many

processes
○ Don’t use GLOBAL

replacement
● Better Solution: adjust the

number of frames per process
○ Add more
○ Take away some

6

Page 71

one

Page 5

Dynamic Frame Allocation: Motivation

Page 6

Page 58

two

Page 293

k

int k; // local

for (____) {
 three[k]++;
 k++;

 one = two++;
}

Page 81

three

99

Page 2int m;

for (____) {
 m++;
}

Page 19

m

Requires ONLY two pages to run
“comfortably”

Requires SIX pages to run “comfortably”

Change of Locality: Effect on Page Faults?

Number of PFs vs.
execution time

100

7

Dynamic Page Replacement Algorithms

102

Replacement
Algorithms

Static
FIFO, LRU,

Optimal

Dynamic

Page Fault Frequency

Working Set

Page Fault Frequency Algorithm

103

Time

Pa
ge

 fa
ul

t
fr

eq
ue

nc
y

Increase number of frames

Decrease number of frames

8

Working-Set Model
● Working-Set (of a process): is the current set of pages

that must be resident in RAM for the process to work
“happily”

● The WS model approaches the problem by monitoring
the most recent set of pages used by a process
○ How recent? Window size Δ?
○ Too big = too costly and the window may include extra pages that

may not be needed to make the process “happy”
○ Too small = incorrect estimate of Working Set

105

Working Set Examples

Mem. Ref.

WS (Δ=3)

2 6 1 5 7 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 4 4 1 3

WS (Δ=4)

106

ws = {1,5,7} ws = {5,7} ws = {4}

2 6 1 5 7 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 4 4 1 3

ws = {1,5,6,7} ws = {5,7} ws = {3,4}

9

Working-Set Algorithm
● Algorithm performance depends on the window size Δ

○ Monitor the past Δ references of each process (working set)

● Page Replacement/Allocation Algorithm
○ Add new frames on page fault interrupts
○ Remove memory frames not in the WS
○ Run a process only if all of its WS pages are resident in RAM
○ Suspend some processes (swap out ALL their pages) if the total WS demands (of ALL

runnable processes) exceeds the number of available frame

107

Working Set Algorithm Example (window size 3)
7 0 1 2 0 3 0 4 2 2 2 3 2 1 2 0

0

1

2

108

7

{7}

0

7

{0,7}

7

0

1

{0,1,7} {0,1,2}

0

1

2

{0,2,3}

0

3

2

{0,3} {0,2,4}

0

3

4

{0,1,2}

0

2

4

{0,3,4}

4

2

{2,4} {2}

2

3

2

{2,3}

3

2

{2,3}

2

3

1

{1,2,3} {1,2}

2

1

0

{0,1,2}
Working

set
(Δ=3)

3

0

1

2

10

WS Algorithm: Implementation
● HOW to monitor every memory reference (IMPOSSIBLE)
● Which process to suspend (when total demand > available RAM)

○ Smallest? Low-prio? Oldest?
○ Ideally: swap out a process so total demand <= available RAM

110

WS Approximation
● Borrow the idea from LRU approximation (k-bit history tag)

○ Use “total idle time” in place of history tag

● OS periodically inspects the ref-bit of each page (of every process)
○ If ref-bit is zero, add the amount of CPU time of the process to “idle time”
○ If ref-bit is one, reset “idle-time” to zero
○ Reset the ref-bit

● During PF handling
○ A page with large idle-time is outside the window Δ
○ A page with small idle-time is within the window Δ

111

11

Working Set: Idle time and Virtual CPU time
Reference String

2 6 1 1 6 7 7 7 7 5 1 6 2

Idle time of 1, 2, 6 reset to zero

idle time of 1, 6 reset to zero
idle time of 2 added by “virtual CPU time”

When handling page fault for page 7,
2 has the highest idle time => outside the
current working set

= periodic inspection by OS

= OS page fault handler

112

Extra Benefits of Paging & Page Mapping

113

12

Memory-Mapped Files
● Background: page-fault handler normally loads missing pages from a

paging/swap disk
● A one-bit flag can be used in the PTE to inform the OS to load the “missing

page” from the user file systems
○ Fact: a disk block (of a file) can be mapped to a page (or pages) in RAM
○ A page fault during “memory read” cause the disk block to be loaded (from the file system

to RAM)
○ A “memory write” does not necessarily imply an immediate physical write to the file system

● Linux
○ mmap (void *mem_addr, ___, ___, ___, int file_des, ____)

114

Memory-Mapped I/O
● Another example of memory-mapped “files”
● Goal: Reserved certain memory addresses to be used for I/O operations
● A feature that is usually provided by the CPU hardware
● How it works

○ I/O controllers (hardware) use data and command registers (I/O ports) for exchanging
data/commands with the CPU or DMA

○ CPU splits the entire address space into “I/O addr space” and “MEM addr space”
○ References to address within the “I/O addr space” are routed to the appropriate I/O

device(s)

● Linux: /proc/iomem

115

13

