
Counting-Based Page Replacement 
Algorithms
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Counting-Based Algorithms
● Add a reference counter (in each row of the page table)

○ The HW has to increment the counter by 1 on each memory reference.
○ Expensive hardware

● Least Frequently Used
○ Victim selection: find the page with the smallest counter value
○ Reasoning: actively-used pages will get high count
○ Problem: pages with high count may become too sticky (hard to replace)
○ Solution: periodic decay (by OS) by right shift (div by 2) the counter value

● Most Frequently Used
○ Victim selection: find the page with the largest counter value
○ Reasoning: low count implies the page is just recently loaded, it may be needed again in 

the short future

85

1



More efficient swapping techniques 
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Overhead of Page Replacement
● Two I/O operations to/from the paging disk

○ Swap out: read the content of victim frame (RAM) to the paging disk
○ Swap in: load the requested frame from the paging disk to RAM

● Any techniques to avoid double I/O operations would improve the overall 
page response
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Page Buffering Options 
● Lazy swap out (versus immediate swap out)

○ Swap out are postponed (and perhaps performed in batch), only mark the frame as 
“swapOutNeeded”

○ The swapper maintains a pool of these frames,, swap in requests are handled immediately 
by restoring a frame from this pool

● Periodic Cleaning of “dirty” pages
○ When the paging disk/swap disk is idle write modified/dirty pages to the paging disk (thus 

making them “clean” again) in batch

● Tagged Pool of Free Frames
○ Tag each free frame with the most recent page that occupies the frame
○ When a swap in to bring in page Z is being serviced and the frame associated with Z has not 

been reused, then no actual I/O operation is needed to load the page 
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Thrashing
&

 Dynamic Page Replacement
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VM Paging Algorithms
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Paging 
Algorithms

Replacement 
Policy

Allocation Policy

Local Replacement

Global Replacement

Equal Allocation

Proportional Allocation

Replacement 
Algorithms

Static: FIFO, LRU, Optimal

Dynamic:
Working Set, PF Frequency
Number of frames may change over time

Victim page is selected 
from your own process

Victim page is selected 
from another process

Thrashing
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CPU, Memory, I/O Devices
CPU

Data/Control bus

Address bus

Memory Controller DMA & I/O Controller

RAM Chip I/O Device
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On modern computers, all I/O 
operations are handled by DMA 
(not by CPU)

Thrashing: Circular Events 
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Low CPU utilization &
High swap disk I/O

To increase CPU 
utilization, OS loads more 
NEW processes into RAM

OS must steal 
memory frames from 
EXISTING processes

Higher page faults on 
existing processes

● OS spends more to handle 
page faults (lower CPU 
utilization)

● Higher swap disk I/O

Global  page 
replacement

(Starts here)
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Thrashing
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Thrashing: Problems and Solutions 
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Low CPU utilization &
High swap disk I/O

To increase CPU 
utilization, OS loads more 
NEW processes into RAM

OS must steal 
memory frames from 
EXISTING processes

Higher page faults on 
existing processes

● OS spends more to handle 
page faults (lower CPU 
utilization)

● Higher swap disk I/O

Global  page 
replacement

● Quick Solution
○ Don’t bring in too many 

processes
○ Don’t use GLOBAL 

replacement
● Better Solution: adjust the 

number of frames per process
○ Add more
○ Take away some

6



Page 71

one

Page 5

Dynamic Frame Allocation: Motivation

Page 6

Page 58

two

Page 293

k

int k;  // local

for (____) {
  three[k]++;
  k++;

  one = two++;
}

Page 81

three
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Page 2int m;

for (____) {
  m++;
}

Page 19

m

Requires ONLY two pages to run 
“comfortably”

Requires SIX pages to run “comfortably”

Change of Locality: Effect on Page Faults?

Number of PFs vs. 
execution time
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Dynamic Page Replacement Algorithms
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Replacement 
Algorithms

Static
FIFO, LRU, 

Optimal

Dynamic

Page Fault Frequency

Working Set

Page Fault Frequency Algorithm
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Decrease number of  frames

8



Working-Set Model
● Working-Set (of a process): is the current set of pages 

that must be resident in RAM for the process to work 
“happily”

● The WS model approaches the problem by monitoring 
the most recent set of pages used by a process
○ How recent? Window size Δ?
○ Too big = too costly and the window may include extra pages that 

may not be needed to make the process “happy”
○ Too small = incorrect estimate of Working Set
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Working Set Examples

Mem. Ref. 

WS (Δ=3)

2  6  1  5  7  7  7  7  7  5  1  6  2  3  4  1  2  3  4  4  4  3  4  4  4  1  3  

WS (Δ=4)

106

ws = {1,5,7} ws = {5,7} ws = {4}

2  6  1  5  7  7  7  7  7  5  1  6  2  3  4  1  2  3  4  4  4  3  4  4  4  1  3  

ws = {1,5,6,7} ws = {5,7} ws = {3,4}

9



Working-Set Algorithm
● Algorithm performance depends on the window size Δ

○ Monitor the past Δ references of each process (working set)

● Page Replacement/Allocation Algorithm
○ Add new frames on page fault interrupts
○ Remove memory frames not in the WS
○ Run a process only if all of its WS pages are resident in RAM
○ Suspend some processes (swap out ALL their pages) if the total WS demands (of ALL 

runnable processes) exceeds the number of available frame
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Working Set Algorithm Example (window size 3)
7     0     1     2     0     3     0     4     2     2     2     3     2     1     2     0

0

1

2
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WS Algorithm: Implementation
● HOW to monitor every memory reference (IMPOSSIBLE)
● Which process to suspend (when total demand > available RAM)

○ Smallest? Low-prio? Oldest?
○ Ideally: swap out a process so total demand <= available RAM
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WS Approximation
● Borrow the idea from LRU approximation (k-bit history tag)

○ Use “total idle time” in place of history tag

● OS periodically inspects the ref-bit of each page (of every process)
○ If ref-bit is zero, add the amount of CPU time of the process to “idle time”
○ If ref-bit is one, reset “idle-time” to zero
○ Reset the ref-bit 

● During PF handling
○ A page with large idle-time is outside the window Δ 
○ A page with small idle-time is within the window Δ
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Working Set: Idle time and Virtual CPU time
Reference String

2      6  1     1        6    7       7  7   7     5         1    6           2  

Idle time of 1, 2, 6 reset to zero

idle time of 1, 6 reset to zero
idle time of 2 added by “virtual CPU time”

When handling page fault for page 7,
2 has the highest idle time => outside the 
current working set

= periodic inspection by OS

= OS page fault handler
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Extra Benefits of Paging & Page Mapping
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Memory-Mapped Files
● Background: page-fault handler normally loads missing pages from a 

paging/swap disk
● A one-bit flag can be used in the PTE to inform the OS to load the “missing 

page” from the user file systems  
○ Fact: a disk block (of a file) can be mapped to a page (or pages) in RAM
○ A page fault during “memory read” cause the disk block to be loaded (from the file system 

to RAM)
○ A “memory write” does not necessarily imply an immediate physical write to the file system

● Linux
○ mmap (void *mem_addr, ___, ___, ___, int file_des, ____)
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Memory-Mapped I/O
● Another example of memory-mapped “files”
● Goal: Reserved certain memory addresses to be used for I/O operations
● A feature that is usually provided by the CPU hardware
● How it works

○ I/O controllers (hardware) use data and command registers (I/O ports) for exchanging 
data/commands with the CPU or DMA

○ CPU splits the entire address space into “I/O addr space” and “MEM addr space”
○ References to address within the “I/O addr space” are routed to the appropriate I/O 

device(s)

● Linux: /proc/iomem
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