
Page Replacement Algorithms

38

Preemptive CPU Scheduler: which process
to run next when CPU is vacant

39

Page Replacement: which process page to
kick-out of RAM when RAM becomes full

1

R2

G1

R3

R0

G0

G0

G1

G2

0

1

2

3

4

5

R1

R2

R3

R0

R4

4

1

0

5

3

2
RAM is full

red page table (+ resident bit)

green page table (+ resident bit)

swap
space

G2

1

1

1

1

0

1

1

0

R4R4: page fault
interrupt

Page Replacement: HW and SW coordination

R1

1

Find victim frame:
red or green?

2

3 Swap out victim
frame

4

Swap in R4

5 Update resident
bit from 0 to 1

Initiated by hardware Handled by software (OS)Virtual Physical

Swap out X?

40

Page Replacement
● Page Fault Interrupt triggers the OS to bring the missing page into RAM

○ But, no empty frame is available in RAM

● One of the frames (victim frame) must be overwritten
○ Whose frame?
○ Which frame?
○ Was the frame modified?

● Page Replacement = [Swap Out Victim Pg] + Swap In Missing Pg
● Technicality: Page Replacement or Frame Replacement?

41

2

Can we not swap out?

Can we just overwrite the victim frame?

42

Dirty Bit / Modify Bit
● A(nother) bit in the page table to indicate if the corresponding page has

been altered since the last time it was swapped in
○ The modify/dirty bit is automatically set by hardware (i.e. data written to a page)

● The the modify/dirty bit is FALSE, there is no need to write a victim page to
the swap space

43

3

Algorithms for Demand Paging
● Objective: Minimize Page Fault Rate
● Frame Allocation Algorithm

○ Determine how many frames to allocate to each process
○ Easier task to solve
○ Consequence of poor decision?

● Page Replacement Algorithm
○ Select a victim frame (when handling page fault and memory is full)
○ Harder task to solve
○ Consequence of poor decision?

44

Page Replacement Algorithms
● Static Algorithms assume the number of frames allocated to a process is

fixed
○ Local scope: victim page is selected from the process experiencing the fault

● Dynamic Algorithms adjust number of frame allocations as a process
runs
○ Global scope: victim page is selected system wide

46

4

● FIFO
○ Belady’s Anomaly

● Optimal Page Replacement
● LRU

○ Stack Algorithms

● LRU approximation
○ Several techniques for timestamp approximation, clock/second-chance algorithms

● Counting-Based
○ LFU: Least Frequently Used
○ MFU: Most Frequently Used

Static Page Replacement Algorithms

47

Replacement Policy
● Which page to replace?
● The page replaced should (ideally) by the page least likely to be referenced

in the near future.
○ Impossible to know future behavior of our programs!

● Most algorithms predict future behavior based on past behavior

48

5

FIFO Page Replacement
● Selection of victim: max age in RAM / oldest frame in RAM

○ Replace the page the has been in RAM the longest
retire long-time employees

● Implementation: use a circular buffer to keep the resident page numbers
● Belady’s Anomaly: number of page faults may increase when a process is

allocated more frames
● Consequence of poor choice: the victim page may be referenced again

very soon

49

FIFO (victim selection: oldest page)
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

50

6

FIFO: Belady’s Anomaly
1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

52

FIFO: Belady’s Anomaly
1 2 3 4 1 2 5 1 2 3 4 5

1 1

2

1

2

3

4

2

3

4

1

2

5

1

2

5

3

2

1 1

2

1

2

3

1

2

3

4

5

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

1 2 3 4 1 2 5 1 2 3 4 5

5

3

4

4

1

2

3

4

5

2

3

4

1

3

9 Page Faults

10 Page Faults

53

7

Too few coat hangers
@

end of winter cleanup

Which coats to store away? rain
coats or winter coats?

54

Optimal Page Replacement Algorithm
● Selection of Victim: farthest next (near future) reference

○ Replace the page that WILL NOT be used for the longest period of time
○ Impossible to implement, use only for theoretical analysis

● Does not suffer from Belady’s anomaly
● Gives the lowest page fault rate

55

8

Optimal (victim: farthest next ref)
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

56

Optimal but can't predict future refs.
Impossible to implement

We know only past refs...

58

9

Optimal: farthest next reference (forward dist)

LRU: farthest previous reference (backward dist)

59

Least-Recently Used (LRU)
● Selection of Victim: farthest previous reference

○ Replace the page that HAS NOT been used for the longest period of time
Bookshelf clean up: C, C++, COBOL, Python, Ruby?

● Approximation to the Optimal Algorithm
○ Backward distance is a good estimate for forward distance
○ LRU does not suffer from Belady’s Anomaly

● Implementation
○ What we need: timestamp to last access/reference (updated by hardware). Replace the

page with the smallest timestamp

60

10

LRU (victim: farthest past ref)
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

61

FIFO vs. LRU

63

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

0

1

3

0

1

2

7

1

2

7

0

1

7

0

2

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

11

LRU on Reversed Reference String

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

1 0 7 1 0 2 1 2 3 0 3 2 4 0 3 0 2 1 0 7

Reversed Reference String

Original Reference String

64

LRU on a Reversed Reference String
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

1 0 7 1 0 2 1 2 3 0 3 2 4 0 3 0 2 1 0 7

1 1

0

1

0

7

1

0

2

1

3

2

0

3

2

4

3

2

4

0

2

4

0

3

2

0

3

2

0

1

7

0

1

Reversed Reference String

65

12

LRU vs Optimal

66

1. pf(LRU(S)): total number of page faults of LRU on reference string S
2. pf(Opt(Sr)): total number of page faults of Optimal on reverse of S
3. pf(LRU(S)) = pf(Opt(Sr))
4. For any ref string M pf(LRU(M)) ≥ pf(Opt(M)) Optimal is the best

Therefore

● pf(LRU(S)) ≥ pf(Opt(S)) = pf(LRU(Sr)) ⇒ pf(LRU(S)) ≥ pf(LRU(Sr))
● pf(LRU(Sr)) ≥ pf(Opt(Sr)) = pf(LRU(S)) ⇒ pf(LRU(Sr)) ≥ pf(LRU(S))

Consequently: pf(LRU(Sr)) = pf(LRU(S)) or reversing the ref string yields the
same page fault count on LRU (and Optimal)

Page Replacement Algorithms: Implementation

67

Algorithm Pros Cons

FIFO Easy to implement (queue of page numbers) Belady’s Anomaly

Optimal No Belady’s Anomaly Impossible to implement

LRU No Belady’s Anomaly

Stack Algorithm

P(N) = set of pages resident in RAM when process is allocated N frames

Property of Stack Algorithm: P(N) ⊆ P(N + k) where k > 1

As the number of frames goes up, you never lose pages!

13

LRU as a Stack Algorithm
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

7 7

0

7

0

1

7

0

1

2

3

0

1

2

3

0

4

2

3

0

1

2

7

0

1

2

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

68

14

