
Page Fault
(how to minimize)

21

Multiple PF Interrupts (from ONE asm inst)

(Page 7: Code)

// in C: a = b + c
add $7FF004, $6B00, $66644D

(Page 22: Data)

(Page 53: Data)

(Page 17: Data)

CPU microcode generates THREE virtual addresses for the loading the data

22

1

Handling Page Faults (in details)
● The process experiencing Page Fault Interrupt (PFI) is blocked
● The OS initiates swap disk I/O: read in the missing page
● Direct Memory Access (DMA) handles swap disk I/O operation (while the

OS performs other tasks)
● DMA notifies I/O completion (via interrupt)
● The OS handles interrupt and resumes the PF handling (update the

process page table and other data structures)
● Resume the faulty process from the instruction that causes PFI

23

Demand Paging Effective Access Time
● RAM access time (faster is preferred)
● TLB access time and TBL hit/TLB miss (higher hit ratio is preferred)
● Page fault rate (low PageFault rate is preferred)
● Page fault service time (short PageFault service time is preferred)

○ Time to run page fault interrupt handler
○ Time to perform I/O to/from swap disk (the sloooooowest)
○ Time to update Page Table

25

2

These numbers ignore TLB details

26

RAM Access (M) Page Fault Service (S) Page Fault Ratio (f) Total Access Time

200 ns 8 ms (= 8,000,000 ns) 0.001 2x200 + 0.001x8,000,200 = 8,400 ns

200 ns 8 ms (= 8,000,000 ns) 0.00001 2x200 + 0.00001x8,000,200 = 1,200 ns

Is page in
RAM?

Handle Page Fault Interrupt

Load Page from Swap Disk

Use Frame # in Page Table to
generate Physical Address

Update Page Table

Not resident (Page Fault)Yes, resident (No PF)

Use Frame # in Page Table to
generate Physical Address

Prob: 1 − f Prob: f

Lookup Frame # in
Page Table

Fetch Data/Inst

Fetch Data/Inst

M

M M

M

S (the slowest)

Without TLB

27

TLB hit?

Use Frame # in
TLB to generate
Physical Address

Lookup Frame # in
Page Table

Is page in
RAM?

Handle Page Fault Interrupt

Load Page from Swap Disk

Fetch Data/Inst

Use Frame # in Page Table to
generate Physical Address

Update Page Table

Update TLB

Yes No (TLB miss)

Not resident (Page Fault)Yes (No PF)

Use Frame # in Page Table to
generate Physical Address

1

2

3

Case TLB Access RAM Access Swap Disk Access

1 Read 1x No

2 Read & Update 2x (or more*) No

3 Read & Update 3x (or more*) Yes

(*) with hierarchical paging

Fetch Data/Inst

Fetch Data/Inst

Search TLB

Update TLB

Prob: h Prob: 1 − h

Prob: fProb: 1 - fM

M

M

M

M

T

T

T

S

3

COW: Copy-On-Write
● Recall that fork() creates a new child process, whose process image is a

twin image of the parent
● To speed up “spawning”, use “lazy duplication”. Let the child process

share the parent process image
○ Create the actual duplicate when the child is accessing in R/W mode
○ Duplicate the entire process image?
○ Duplicate only the page being written by child?

28

RAM

COW: before fork()
R0
int x = 2414;

R1

fork()

R2

24
5

37

Frame #5

fork()

Frame #24

int x = 2414;

Frame #37

29

4

RAM

COW: after fork()
R0
int x = 2414;

R1

fork()

R2

24
5

37

Frame #5

fork()

Frame #24

int x = 2414;

Frame #3724
5

37

Green attempts to write to page G0
30

No process image
created for Green.

ONLY its page table
is created

RAM

Copy-on-Write: Frame 24 is copied to Frame 13
R0
int x = 2414;

R1
fork()

R2

24
5

37

Frame #5

fork()

Frame #24

int x = 2414;

Frame #37

G0
x is 2614

G1
fork()
fork()

G2 x+= 200;

24 13
5

37

Green is allocated a separate frame for
G0 (copied from R0). But its G1 and G2
are shared with Red

Frame #13

int x = 2614

31

5

Memory Reference Pattern

32

Page 4

Code With Loop and Local Variables

33

Page 5

Page 6

// 3 instructions here

// loop 7 times
while (___) { // loop
 // 2 instructions
}

// 4 instructions

4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6

Page 4

Page 5

Page 6

// 3 instructions here

while (___) { // 5x
 int x;
 x++;
}

// 4 instructions

Stack (Page 7)

4 4 4 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 6 6 6 6

At least 3 page faults

At least 4 page faults

From loop (5x)

6

Reference Locality
● Memory access pattern of a program is NOT random. It follows some

patterns of locality

34

● Spatial Locality (clustered in space): when a program accesses a particular
memory location X, it may also access other locations nearby X

(visiting other nearby stores)

● Temporal Locality (clustered in time): when a program accesses a particular
memory location X, it may reference X again in the short future

(returning to a favorite store a week later)

Ref #1: 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3

Ref #2: 1 1 1 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 3 3 3 3

Other examples of Locality
● Spatial Locality (access other locations nearby X)

○ Executing sequential instructions
○ Accessing several local variables in the same stack frame
○ Adjacent array elements

● Temporal Locality (repeated access to the same location X)
○ A loop that refers to the same set of global variables / heap variables
○ Multiple calls to same function

36

7

Spatial locality

Temporal locality

37time

ad
dr

es
s

Locality: Space-Time Diagram
Spatial locality: nearby locations are referenced about
the same time
Temporal locality: one location is referenced (again
many tines) in the future

8

