
Virtual Memory

Computer Memory Created
with Illusions

● Segmentation and Paging
○ Code and data appear to be contiguous in RAM

● Virtual Memory
○ In addition to contiguous view of code and data
○ Your process seems to have access to terabyte* of memory (much bigger than the amount

of installed RAM)
○ Your process seems to reside in RAM all the time

(Magician + Stage Props) ⇔ (Operating System + MMU)

Logical / Virtual address space

OS: The Memory Illusionist

2

1

● Logical/Virtual address (highlighted in yellow) has 12 hex digits or 48 bits
○ Amount of accessible memory is 248 = 28 x 240 =256 Terabytes

● Total physical RAM is only 16 Gigabytes
○ 16 Gigabytes = 234

3

How humans read a (printed) book

One page at a time?
One word at a time?

5

2

Observations
● Not all pages (of a process) have to be resident in RAM

○ For the CPU to work properly, it must have access to
■ The current instruction
■ The current set of data used by the instruction

● Stack, heap, or data section
○ In a program that a huge array, the loop the manipulates it inspects only a small number of

elements (two or three)

● Only pages currently needed by the CPU have to be resident in RAM
○ Other pages may reside on the swap space/swap disk/paging disk

● Dynamic Loading / Demand Paging allows the CPU to run a process that
is only partially resident in memory

6

Components of Virtual Memory

7

Swap out

Swap in

Demand Paging (HW + SW)

Page Replacement Algorithm (SW)

3

Demand Paging
● Load (virtual) pages to RAM only when they are used/referenced
● Must coordinate loading with a (lazy) pager daemon
● To disambiguate: swapper vs. pager

○ Swapper: swap the entire process (slooooooower)
○ Paper: swap only pages of a process (faster)

● I/O operations to swap disk are usually faster than I/O to user filesystems
○ Swap disks are not organized into hierarchical directory structures, binary data from user

pages are stored in a “flat” structure
○ No directory traversal required to access a page from the paging/swap disk

8

Swapping
● A process must be resident in RAM to run
● When more memory is needed, the Medium Term Scheduler may begin to

swap out processes
○ Processes in the ready queue are good candidates for swapping out
○ When a process is (being) swapped out

■ The entire current process image is dumped to the swap space
■ All memory areas owned by the process are released

● Swapping allows the system to host several processes whose total
memory requirement exceeds the physical RAM size

● Swap Space/Swap Disk: a designated disk used for storing the binary
process image of swapped out processes

9

4

Preemptive Scheduling ⇿ CPU

Swapping ⇿ RAM

10

Swapped Out Processes

running

blocked

Ready
(in RAM)

terminatedcreated

Ready
(swapped out)

On Swap Disk In RAM

Which process(es) to swap out?

11

5

Swapping-Related Issues
● The OS maintains two ready queues

○ Processes which are ready and resident in RAM
○ Processes which are ready but swapped out

● When a process is swapped (back) in, it may resume execution at a
different physical address

● A process to be swapped out should be completely IDLE
○ No pending I/O (because pending I/O requires target buffer to be resident in RAM)

12

Page Table Entries

14

5

-

-

4

-

-

1

1

1

1

1

-

-

-

0

0

0

0

1

1

0

?

?

0

0

?

?

P0

P1

P2

P3

P4

- 0 ?

Frame #

Pr
es

en
t

Re
sid

en
t

Present bit: page is part of the process

4 bytes per row

Assuming page size 4K (4096 bytes)
And 4 bytes per page table entry

A physical page can hold 1024 entries / rows

1024 rows total

only 5
rows used

More entries not shown

Resident bit: page is physically in RAM

Pages NOT in RAM

6

R2

G1

R3

R0

G0

G0

G1

G2

0

1

2

3

4

5

R1

R2

R3

R0

R4

4

0

5

3

2

Vi
rt

ua
l A

dd
re

ss
 S

pa
ce

s
(P

ag
es

)

Physical
Memory

red page table

green page table

R1

G2

1

0

1

1

0

1

1

0

R4

page fault
interrupt

MMU with Virtual Memory

15

2nd column is
Resident/Non-Resident bit

R0

R2

R3

G1

G0

swap disk

SegFault vs. Page Fault

16

7

Demand Paging + TLB + Swap Space

Ph
ys

ic
al

 M
em

or
y

CPU

p d

p
f

physical
address

page table

f d

virtual
address

p2 f2
p1 f1

TLB

(2b) TLB miss

(3) update TLB (on valid PTE)

0
1

(1) TLB
match

page fault interrupt
On invalid PTE Page Fault

Interrupt
Handler

swap
space

(4)

(5a) swap
in/outPage

Replacement
Algorithm

(5b) update PT
(5c) update TLB

(2a) TLB hit

ha
rd

w
ar

e
so

ftw
ar

e

17

More Page Table Details

18

8

R2

R3

R0

G0

G1

G2

0

1

2

3

4

5

R1

R2

R3

R0

R4

4

0
5

Vi
rt

ua
l A

dd
re

ss
 S

pa
ce

s
(P

ag
es

)

Physical Memory

red page table

green page table

1
0
1
1
0

0
0
0

Process Size vs. Page Table Size
1
1
1
1
1

?0
?0
?0

1
1
1

?0
?0
?0
?0
?0

(not)resident bit: page is (not) mapped to RAM
(not)present bit: page is (not) in process address space

19

pr
es

en
t

re
si

de
nt

R1

G2

R4

R0

R2

R3

G1

G0

swap disk

Green PT at the time of execve()

D
at

a
or

 in
st

ru
ct

io
n

Memory Control Unit

20

CPU

RAM Swap Space

Virtual address

Physical address

TLB

Page Table(s) in RAM

Page Fault
Interrupt
Handler

Hardware Software

S
lo

w
er

Fa
st

er

Page Fault
Interrupt(s)

9

