Virtual Memory

05: The Memory lllusionist

e Segmentation and Paging
o Code and data appear to be contiguous in RAM
e Virtual Memory
o In addition to contiguous view of code and data
o Your process seems to have access to terabyte” of memory (much bigger than the amount
of installed RAM)
o Your process seems to reside in RAM all the time

(Magician + Stage Props) < (Operating System + MMU)

Logical / Virtual address space




eos Llscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian
Address sizes: 39 bits physical,] 48 bits virtual
CPU(s): 8

~ ./a.out
Address of main() at runtime is 0x562bb6130149 12 hex digits = 48 bits
~ free --giga I —
total used free shared buff/cache available
Mem: 16 1 1:]: 0 2 14
Swap: 4 0 4

e Logical/Virtual address (highlighted in yellow) has 12 hex digits or 48 bits
o Amount of accessible memory is 248 = 28 x 240 =256 Terabytes

e Total physical RAM is only 16 Gigabytes
o 16 Gigabytes = 234

Virtual Mem 248

AN o o 214 ~ 16 x 10° times
S1ze

How humans read a (printed) book

One page at a time?
One word at a time?




Observations

e Not all pages (of a process) have to be resident in RAM
o For the CPU to work properly, it must have access to
m The current instruction
m The current set of data used by the instruction
e Stack, heap, or data section
o Inaprogram that a huge array, the loop the manipulates it inspects only a small number of
elements (two or three)
e Only pages currently needed by the CPU have to be resident in RAM
o Other pages may reside on the swap space/swap disk/paging disk

e Dynamic Loading / Demand Paging allows the CPU to run a process that
is only partially resident in memory

Components of Virtual Memory

Pages

0
N Demand Paging (HW + SW)
T~ Page frames
2| —4—x 0 Page Replacement Algorithm (SW)
3 -1 X 1

Swap in

Swap out




Demand Paging

e Load (virtual) pages to RAM only when they are used/referenced
Must coordinate loading with a (lazy) pager daemon

To disambiguate: swapper vs. pager
o Swapper: swap the entire process (slooooooower)
o Paper: swap only pages of a process (faster)
e |/O operations to swap disk are usually faster than 170 to user filesystems
o Swap disks are not organized into hierarchical directory structures, binary data from user
pages are stored in a “flat” structure
o No directory traversal required to access a page from the paging/swap disk

Swapping

e A process must be resident in RAM to run
When more memory is needed, the Medium Term Scheduler may begin to

SWwap out processes
o Processes in the ready queue are good candidates for swapping out
o When a process is (being) swapped out
m The entire current process image is dumped to the swap space
m  All memory areas owned by the process are released

e Swapping allows the system to host several processes whose total
memory requirement exceeds the physical RAM size

e Swap Space/Swap Disk: a designated disk used for storing the binary
process image of swapped out processes




Preemptive Scheduling — (PU

Swapping - RAM

Swapped Out Processes

Which process(es) to swap out?

Ready
(swapped out)

On Swap Disk In RAM




Swapping-Related [ssues

e The OS maintains two ready queues
o Processes which are ready and resident in RAM
o Processes which are ready but swapped out

e When a process is swapped (back) in, it may resume execution at a
different physical address

e A process to be swapped out should be completely IDLE
o No pending I/0 (because pending I/0 requires target buffer to be resident in RAM)

12

X
Page Table Ent -
age Table Entries .
Frame # RS O
Q S ~N
5 1 1 Present bit: page is part of the process
PO i} 1 0 : page is physically in RAM
- 1 0
4 1 1
- 1 0
P3 - 0 ? > 1024 rows total
_ 0 2 Assuming page size 4K (4096 bytes)
And 4 bytes per page table entry
More entries not shown
A physical page can hold 1024 entries / rows
- 0 ?
Pages NOT in RAM - 0 ?
- 0 ?
S

4 bytes per row

14




MMU with Virt

Virtual Address Spaces

4

1

o|l-~|-]0

e

2nd column is
Resident/Non-Resident bit

Udl Memory

red page table

G1

Physical

R1

G

Memory swap disk

s\

3
2
/ green page table

page fault
interrupt

15

SegFault vs. Page Fault




Demand Paging + TLB + Swap Space

virtual
address

(2a) TLB hit

(1) TLB
match

|

(3) update TLB (on valid PTE)

(2b) TLB miss (5b) update PT

) (5¢) update TLB
\

physical
address

page Yault interrupt
On invalia Page Fault
Interrupt

Handler

Replacement
Algorithm

Physical Memory

(5a) swap
in/out

hardware

software

17

More Page Table Details

18




Process Size vs. Page Table Size

(not)resident bit: page is (not) mapped to RAM
(not)present bit: page is (not) in process address space

red page table

4 111

110

0 111

§ 5 111

© 110

Q 0|2

» 0>
w0

7, 0]°?
()
S

O e T

© g 3

< g 8
©

£ 1] 0

= 110

> 110

0|~

0]~7

07

07

07

green page table

0-

swap disk

Physical Memory

Green PT at the time of execve()

19

Virtual address

l
l
l
|
I<
|
|
|
|
|
|

Memory Control Unit

Physical address

I

—
-~
-

o —

-1
-~§/\/ l-’/’

' Page Fault -~
Interrupt(s) ~ =~
-~ =

- — -
~

Page Fault
Interrupt
Handler

Hardware

Software

Faster

Slower

y

20




