Virtual Memory

OS: The Memory Illusionist

- Segmentation and Paging
 Code and data appear to be contiguous in RAM
- Virtual Memory
 - In addition to contiguous view of code and data
 - Your process **seems to have** access to terabyte^{*} of memory (*much bigger* than the amount of installed RAM)
 - Your process **seems to reside** in RAM *all* the time

(Magician + Stage Props) ⇔ (Operating System + MMU)

Logical / Virtual address space

<pre>> ssh e Architectu CPU op-mod Byte Order Address si CPU(s):</pre>	os lscpu re: e(s): : zes:		x86_64 32-bit, 64 Little End 39 bits phy 8	-bit ian ysical, 48	3 bits virtu	al
→ ~ ./a.c Address of → ~ free	out ⁻ main() at ru giga	ntime is 0	0×562bb6130149	12 hex	k digits = 48 b	its
	total	used	free	shared	buff/cache	available
Mem:	16	1	11	0	2	14
Swap:	4	0	4			

Logical/Virtual address (highlighted in yellow) has 12 hex digits or 48 bits
 Amount of accessible memory is 2⁴⁸ = 2⁸ x 2⁴⁰ = 256 Terabytes

- Total physical RAM is only 16 Gigabytes
 - 16 Gigabytes = 2^{34}

 $rac{ ext{Virtual Mem}}{ ext{RAM size}} = rac{2^{48}}{2^{34}} = 2^{14} pprox 16 imes 10^3$ times

How humans read a (printed) book

One <u>page</u> at a time? One <u>word</u> at a time? 3

Observations

- Not all pages (of a process) have to be resident in RAM
 - For the CPU to work properly, it must have access to
 - The **current** instruction
 - The current set of data used by the instruction
 - Stack, heap, or data section
 - In a program that a huge array, the loop the manipulates it inspects only a small number of elements (two or three)
- Only pages currently needed by the CPU have to be resident in RAM
 - Other pages may reside on the swap space/swap disk/paging disk
- Dynamic Loading / Demand Paging allows the CPU to run a process that is only *partially resident* in memory

Components of Virtual Memory

6

Demand Paging

- Load (virtual) pages to RAM only when they are used/referenced
- Must coordinate loading with a (lazy) pager daemon
- To disambiguate: swapper vs. pager
 - Swapper: swap the **entire** process (sloooooower)
 - Paper: swap only pages of a process (faster)
- I/O operations to swap disk are usually faster than I/O to user filesystems
 - Swap disks are not organized into hierarchical directory structures, binary data from user pages are stored in a "flat" structure
 - No directory traversal required to access a page from the paging/swap disk

Swapping

- A process must be resident in RAM to run
- When more memory is needed, the Medium Term Scheduler may begin to swap out processes
 - Processes in the ready queue are good candidates for swapping out
 - \circ $\;$ When a process is (being) swapped out $\;$
 - The **entire current process image** is dumped to the swap space
 - All memory areas owned by the process are released
- Swapping allows the system to host several processes whose total memory requirement exceeds the physical RAM size
- Swap Space/Swap Disk: a designated disk used for storing the binary process image of swapped out processes

Swapping-Related Issues

- The OS maintains two ready queues
 - Processes which are ready and **resident in RAM**
 - $\circ\quad$ Processes which are ready but swapped out
- When a process is swapped (back) in, it may resume execution at a different physical address
- A process to be swapped out should be completely IDLE
 - \circ $\:$ No pending I/O (because pending I/O requires target buffer to be resident in RAM) $\:$

IC) Frame	#	e e e e e e e e e e e e e e e e e e e	Resident			
5		1	1			
-		1	0			
-		1	0			
4		1	1			
-		1	0			
-		0	?			
-		0	?			
More entries not shown						
-		0	?			
_		0	?			

0

4 bytes per row

?

Present bit: page is part of the process **Resident bit**: page is physically in RAM

1024 rows total

Assuming page size 4K (4096 bytes) And 4 bytes per page table entry

A physical page can hold 1024 entries / rows

12

Demand Paging + TLB + Swap Space

More Page Table Details

