
Virtual Memory

Computer Memory Created 
with Illusions

● Segmentation and Paging
○ Code and data appear to be contiguous in RAM

● Virtual Memory
○ In addition to contiguous view of code and data
○ Your process seems to have access to terabyte* of memory (much bigger than the amount 

of installed RAM)
○ Your process seems to reside in RAM all the time

(Magician + Stage Props) ⇔ (Operating System + MMU)

Logical / Virtual address space

OS: The Memory Illusionist
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● Logical/Virtual address (highlighted in yellow) has 12 hex digits or 48 bits
○ Amount of accessible memory is 248 = 28 x 240 =256 Terabytes

● Total physical RAM is only 16 Gigabytes
○ 16 Gigabytes = 234 

3

How humans read a (printed) book

One page at a time?
One word at a time?
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Observations
● Not all pages (of a process) have to be resident in RAM

○ For the CPU to work properly, it must have access to
■ The current instruction
■ The current set of data used by the instruction

● Stack, heap, or data section
○ In a program that a huge array, the loop the manipulates it inspects only a small number of 

elements (two or three)

● Only pages currently needed by the CPU have to be resident in RAM
○ Other pages may reside on the swap space/swap disk/paging disk

● Dynamic Loading / Demand Paging allows the CPU to run a process that 
is only partially resident in memory
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Components of Virtual Memory
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Swap out

Swap in

Demand Paging (HW + SW)

Page Replacement Algorithm (SW)

3



Demand Paging
● Load (virtual) pages to RAM only when they are used/referenced
● Must coordinate loading with a (lazy) pager daemon
● To disambiguate: swapper vs. pager

○ Swapper: swap the entire process (slooooooower)
○ Paper: swap only pages of a process (faster)

● I/O operations to swap disk are usually faster than I/O to user filesystems
○ Swap disks are not organized into hierarchical directory structures, binary data from user 

pages are stored in a “flat” structure
○ No directory traversal required to access a page from the paging/swap disk
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Swapping
● A process must be resident in RAM to run
● When more memory is needed, the Medium Term Scheduler may begin to 

swap out processes
○ Processes in the ready queue are good candidates for swapping out
○ When a process is (being) swapped out

■ The entire current process image is dumped to the swap space
■ All memory areas owned by the process are released

● Swapping allows the system to host several processes whose total 
memory requirement exceeds the physical RAM size

● Swap Space/Swap Disk: a designated disk used for storing the binary 
process image of swapped out processes
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Preemptive Scheduling ⇿ CPU

Swapping ⇿ RAM
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Swapped Out Processes

running

blocked

Ready
(in RAM)

terminatedcreated

Ready
(swapped out)

On Swap Disk In RAM

Which process(es) to swap out?
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Swapping-Related Issues
● The OS maintains two ready queues

○ Processes which are ready and resident in RAM
○ Processes which are ready but swapped out

● When a process is swapped (back) in, it may resume execution at a 
different physical address

● A process to be swapped out should be completely IDLE
○ No pending I/O (because pending I/O requires target buffer to be resident in RAM)
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Page Table Entries
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Demand Paging + TLB + Swap Space
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More Page Table Details
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