
R2

G2

G1

R1

R3

R0

G0

R4

G0

G1

G2

0

1

2

3

4

5

6

7

8

9

R1

R2

R3

R0

R4

6

9

Lo
gi

ca
l A

dd
re

ss
 S

pa
ce

s
(P

ag
es

)

Ph
ys

ic
al

 M
em

or
y

(F
ra

m
es

)

red page table

green page table

PTBR?

Page Tables of 2 processes (red and green)
Assume page size: 2K (11-bit offset)

● Available RAM is 18K
● Red address space: 0-10K
● Green address space: 0-6K

● Red logical address (2, 350) maps to _________
● Green logical address (2, 350) maps to _________
● Green logical address (4, 100) maps to _________

OS frame table

89

0

1

2

3

4

5

6

7

8

9

P1

P2

P3

P0

P4

6

4

0

5

9

Lo
gi

ca
l A

dd
re

ss
 S

pa
ce

s
(P

ag
es

)

Ph
ys

ic
al

 M
em

or
y

(F
ra

m
es

)

red page table

load r9,0x3008
decr r9

P1

Page size = 2K. Where is "0x3008"?
Page size = 4K. Where is “0x3008”?
Page size = 8K. Where is “0x3008”?

90

7

1

P5

P6

2K = 211

4K = 212

8K = 213

1

91

0x3008 (16-bit number 1 Hex => 4 bits)
● Page size 2K = 211
● lowest 11 bits are page offset
● higher 5 bits are page number

0x3008

0011 0000 0000 1000 Page 6 Offset 008

0x3008 (16-bit number 1 Hex => 4 bits)
● Page size 4K = 212
● lowest 12 bits are page offset
● higher 4 bits are page number

0x3008

0011 0000 0000 1000 Page 3 Offset 008

Paging hardware overhead:

access memory 2x
(2x slower)

92

2

Translation Look-Aside Buffer (TLB)

● Mapping logical page numbers to physical frame address requires
two RAM references
○ The first access to fetch the page table entry (for mapping logical page number to

physical frame number)
○ The second access to fetch the target data/instruction

● To reduce overhead, use a hash map (implemented in hardware) to
resolve mapping from page numbers to frame address
○ Associate Memory (searched by page numbers)

● TLB holds (pid, page number, frame addr) tuples of recently used
addresses

● Issues: TLB hit and TLB miss

93

CPU

p d

p

f

Ph
ys

ic
al

 M
em

or
y

physical address
(of data or inst)

page table
(in RAM)

logical address
(of data or inst)

f d

p2 f2
p3 f3
p4 f4
p5 f5

p1 f1

TLB

(1)

(2) TLB hit

(3a) TLB miss

(3b) save this (p,f) to
TLB

94

Requested Data/Instruction

3

Effective Memory Access Time

● RAM access time is around hundreds of nanoseconds
● TLB access time is usually as fast as CPU registers
● Without TLB: Always two RAM references
● With TLB

○ TLB hit: One TLB access (read) + One RAM Access
○ TLB miss: Two RAM accesses + One TLB (write/update)

● On modern CPUs, TLB can hold up to 4096 entries
● Statistical/Probabilistic Formula (explained)

95

CPU

p d

p

f

Ph
ys

ic
al

 M
em

or
y

physical address
(of data or inst)

page table
(in RAM)

logical address
(of data or inst)

f d

p2 f2
p3 f3
p4 f4
p5 f5

p1 f1

TLB

(1)

(2) TLB hit

(3a) TLB miss

(3b) save this (p,f) to
TLB

96
100 ns

100 ns
Requested Data/Instruction

5 ns

80%

20%

TLB hit ratio: 80%
TLB access time: 5ns
RAM access time: 100ns

Effective memory access time?

4

Sample Effective Memory Access Time
TLB hit ratio: 80%
TLB access time: 5ns
RAM access time: 100ns

What is the effective memory access time?

● 80% TLB hit: 1 TLB access + 1 RAM access = 0.8 (5 + 100) = 0.8 x 105 = 84
● 20% TLB miss: 1 TLB access + 2 RAM access = 0.2 (5 + 200) = 0.2 x 205 = 41

Analyzed differently:
● TLB is always accessed: 5ns
● 80% TLB hit: 1 RAM access: 0.8 x 100 = 80ns
● 20% TLB miss: 2 RAM accesses: 0.2 x 200 = 40ns

The total from either analysis: 125ns
Without TLB the access time is 200ns

97

98

Managing (Huge) Page Tables

5

Page Table Management

99

● One page table (PT) per process
● The number of entries in PT is proportional to the process size
● The maximum number of entries in PT is determined by

○ The maximum size logical address space allowed by the architecture
○ The page size selected by the hardware

● Page tables must be stored in RAM (similar to memory for process)
● For MMU address translation hardware to work properly, page

tables must be stored contiguously in RAM
○ Process can be stored non-contiguously but page tables cannot?

● It becomes an issue when the page table is bigger than the size of
a single page

Issue: Giant & Contiguous Page Tables

100

6

Word Puzzle (with contiguous capacity 4)

101

M G H A DE Z F O C Y NR T I U S L
0 167 8 9 10 11 12 13 14 15 171 2 3 4 5 6

1016 6 12 80

50 51 52 5330 31

- -

32 33

50 30 - -

0 1 2 3

F R O ZE N . .

Page Tables (like segment tables) are a
contiguous “array” that may span

multiple pages

102

7

103

Size of Page Table

Page
Size

Number of bits in Max Number
of pages

Max Size of Page
Table Explanation

Offset Page Number

8K = 213 13 7 27 22 x 27 = 29 = 512 OK: Page tables fit one page

4K 12 8 28 22 x 28 = 210 = 1K OK: PT fit one page

2K 11 9 29 22 x 29 = 211 = 2K OK: PT fit one page

1K 10 10 210 22 x 210 = 212 = 4K Page tables require 4 frames

512 9 11 211 8K PT requires 16 frames

256 8 12 212 16K PT requires 64 frames

Assumptions:
● 20-bit logical address
● 4 bytes per page table entry

Logical Address Structure
Logical address space 1GB (230 bytes) with page (or frame) size 8KB (213 bytes)

17-bit page number 13-bit offset

30-bit logical address

Logical address space 4GB (232 bytes) with page (or frame) size 16KB (214 bytes)

18-bit page number 14-bit offset

32-bit logical address

Logical address space 256TB (248 bytes) with page (or frame) size 8MB (223 bytes)

25-bit page number 23-bit offset

48-bit logical address

104

8

Page Table Structure

● Main use: maps logical page numbers to physical frame “address”
● A page table is treated like a contiguous array
● Its base address is stored in PTBR (Page Table Base Register)
● Each row in the page table holds the following information

○ Frame number where the page is mapped to
○ Attributes/flags: reference bit, access mode: R/W, R/O, shared?

● Choices of implementation
○ Small “page tables” can be stored on special CPU registers
○ Large page tables must be stored contiguously in the RAM. The size of a page

table should fit a single frame!
○ Problem: what if the page table itself is too big to fit single frame?

105

Advantages of Paging

● Improvements over variable-size partitions
○ No compaction needed

○ No external fragmentation

○ A small fraction of internal fragmentation

○ Processes can be loaded into non-contiguous frames

● Swapping can be performed per-page (not the entire process)

106

9

Page Sharing and Protection

● Page Table Entries can store the following information
○ Protection/Access: R/W, R/O
○ Present/No-Present Bit: if a page is part of your process address space

● Implementation of “Shared Memory” on a paging-based CPU is
straight forward
○ Assume two processes P1 and P2 share a physical frame #S
○ P1 maps the shared memory segment to its logical page #X
○ P2 maps the shared memory segment to its logical page #Y
○ The OS inserts

■ X => S for P1’s PTE
■ Y => S for P2’s PTE

107

Page Table Design Constraints

● The memory hardware views a page table as a contiguous 1D array
● Page tables must fit into a single physical frame in RAM
● The size of page tables is determined by the size of the address

space supported by the CPU architecture (and NOT by the amount
of RAM installed)

● When page tables exceed the size of a physical frame, the page
tables themselves must be designed to be pageable (can be stored
non-contiguously into several physical frames)

108

10

Managing Huge Page Tables

● Hierarchical Paging
● Hashed Page Tables
● Inverted Page Tables

109

Wyoming

Wisconsin

Arizona

110

A huge
list of 1000 ATM

locations

A (smaller)
list of 50
states

Linear List
(50 sheets of paper)

Hierarchical List
(51 sheets of paper)

Alaska

A (smaller)
list of ATM
in Alabama

11

Page Table Size Considerations

● How many bytes required per page table entry (PTE)
○ What information stored in each PTE?

● How many entries per page table?
● How many PTEs can fit into a physical frame?

111

Recall: MCU for Single-Level Paging

CPU

page # (p) offset (d)

logical
address

frame # (f) offset (d)

p

f

Physical Memory

physical
address end of frame f

d

start of frame f

page table

f x 2m

PTBR

m = number of bits in offset

Cost overhead: additional
memory lookup into page table 112

12

p14K

“I
nn

er
”

Pa
ge

 T
ab

le

(n
on

-c
on

tig
uo

us
)

4K

4K

4K

p1 p2 d

● This diagram assumes each frame is
4KB in size and can hold 1024
entries 4 bytes each

● Each “tall” rectangle is a physical
frame in RAM

Page Directory
("outer" page table)

data/
code

4K

data/
code

4K

4K

p2

d

MCU for Two-Level Page Tables

PTBR

Using these numbers, the page table
can support an address space of size
1024x1024x4K = 4GB “Outer” and “inner” page have similar structure

113

1K PTEs

Paging hardware overhead for 2-level page
tables

=
access memory 3x

⅓ x slower

114

13

row 174K

Pa
ge

 T
ab

le
 (n

on
-c

on
tig

uo
us

)

Frame 313
(4K)

Frame 50

Frame 107

Frame 43

17 72 830

Page Directory
("outer" page table)

data/
code

Frame 28

data/
code

4K

Frame 641

row 72

830
bytes

2-Level PTs: address translation example

PTBR

● Each frame holds 1024 (210) page table entries
● Each frame has 4094 (212) addressable bytes
● The outer and inner page structure usually

have very similar design (easier to design the
hardware)

● The triplet (17,72,830) expressed in binary is
○ 00 0001 0001 (17 in 10 bits)
○ 00 0100 1000 (72 in 10 bits)
○ 0011 0011 1110 (830 in 12 bits)

● The hex equivalent of the above address is
0x0444 833E

50
641

10 bits 10 bits 12 bits

115

17 72 830

Address Format Details
10 bits 10 bits 12 bits

116

Outer PT index 17 (0x11) ⇒ 00 0001 0001
Inner PT index 72 (0x48) ⇒ 00 0100 1000
Offset 830 (0x33E) ⇒ 0011 0011 1110

00 0001 0001 00 0100 1000 0011 0011 1110

0000 0100 0100 0100 1000 0011 0011 1110

 0 4 4 4 8 3 3 E

14

The effect of frame size to logical address
space size

Frame Size PTEs per
frame

Logical Address Structure Theoretical Max
Logical Address

Space

2KB (211 bytes) 29 entries 9-bit outer page, 9-bit inner page, 11-bit offset 229 bytes (512 MB)

8KB (213 bytes) 211 entries 11-bit outer page, 11-bit inner page, 13-bit offset 235 bytes (32 GB)

2MB (221 bytes) 219 entries 19-bit outer page, 19-bit inner page, 21-bit offset 269 bytes (512 EB)

Assume two-level paging

Assume 4-byte PTEs

Frame Size PTEs per
frame

Logical Address Structure Theoretical Max
Logical Address

Space Size

8KB (213 bytes) 210 entries 10-bit outer page, 10-bit inner page, 13-bit offset 233 bytes (8 GB)

32KB (215 bytes) 212 entries 12-bit outer page, 12-bit inner page, 15-bit offset 239 bytes (512 GB)

2MB (221 bytes) 218 entries 18-bit outer page, 18-bit inner page, 21-bit offset 247 bytes (128 TB)

Assume 8-byte PTEs

117

Hierarchical Page Tables

● Modern CPUs support larger logical (and physical) address space
○ Giga (230) => Tera (240) => Peta (250) => Exa (260)
○ 48-bit address space on Intel/AMD CPUs

● Larger address spaces require more bits stored in the PTE
○ Page Table Entries must grow from 4 bytes to 8 bytes

● Increasing PTE size implies fewer entries can be stored in a
physical frame

● Fewer PTE entries implies fewer bits per page number field
● Fewer bits per page number field implies more fields (deeper

hierarchy) to cover

118

15

Intel/AMD Examples

● 64-bit architecture
● Supported page sizes: 4KB (212), 2MB (221), 4MB (222), 1GB (231)
● 52-bit physical address (252 bytes = 4 Petabytes)
● Logical address spaces

○ 32-bit logical address (232 bytes = 4 Gigabytes)
○ 48-bit logical address (248 bytes = 256 Terabytes)

● Hierarchical Paging: 2-, 3-, and 4-level paging

119

Intel/AMD Examples
10-bit PageDir 10-bit PageTab 12-bit Frame Offset

32-bit address, 4K pages, 4-byte page table entries (2-level paging)

10-bit PageDir 22-bit Frame Offset
32-bit address, 4M pages, 4-byte page table entries

12-bit Frame Offset
32-bit address, 4K pages, 8-byte page table entries (3-level paging)
2 9-bit offset9-bit offset

21-bit Frame Offset
32-bit address, 2M pages, 8-byte page table entries (2-level paging)
2 9-bit offset

The leftmost 2-bit selects
one of the four page
directory pointer entries

48-bit address, 4K pages, 8-byte page table entries (4-level paging)
9-bit offset 12-bit Frame Offset9-bit offset9-bit offset9-bit offset

48-bit address, 2M pages, 8-byte page table entries (3-level paging)
9-bit offset 21-bit Frame Offset9-bit offset9-bit offset

48-bit address, 1G pages, 8-byte page table entries (2-level paging)
9-bit offset 30-bit Frame Offset9-bit offset

120

Notice the uniform number of bits (9 or 10) are used for
“page number” in each format

16

Hashed Page Tables

● Observations
○ Each level of hierarchical paging adds one more memory access

■ 1-level ⇒ 2x memory references (50% effective memory bandwidth)
■ 2-level ⇒ 3x memory references (33% effective memory bandwidth)
■ 3-Level ⇒ 4x memory references (25% effective memory bandwidth)
■ 4-Level ⇒ 5x memory references (20% effective memory bandwidth)

○ Page tables are treated as a linear contiguous array but the array is mostly sparse

● Proposed solution: replace the sparse array with a hash table (one
hash table per process)

121

Hashed Page Tables

CPU

p d

Ph
ys

ic
al

 M
em

or
y

physical
address

hash table (must fit within a single page/frame)

f d

logical
address

p2 f2

hash
function

p fp1 f1

linked list of (p,f) pairs
(collision handling: separate chaining)

122

17

Inverted Page Tables

● Observations
○ Each page table may consume lots of memory space

■ Intel/AMD 48-bit 4-level paging consumes 236 x 8 bytes = 239 bytes = 512 GB
○ Each process must maintain its own page table
○ A page table maps a logical page address to a physical frame address

● Proposed Solution
○ Use a global “reverse” map that maps physical frame addresses to logical page

addresses
○ The number of entries in the inverted table = number of frames in RAM

■ Each entry holds the pair (owner pid, logical page mapped to the frame)
○ Only one global table required (instead of one table per process)

123

R2

G2

G1

R1

R3

R0

G0

R4

G0

G1

G2

0

1

2

3

4

5

6

7

8

9

R1

R2

R3

R0

R4

6

4

0

5

9

7

2

1Lo
gi

ca
l A

dd
re

ss
 S

pa
ce

s
(P

ag
es

)

Ph
ys

ic
al

 M
em

or
y

(F
ra

m
es

)

red page table

green page table

pid 2
pid 2
pid 1

- -
pid 1
pid 3
pid 0
pid 0

- -
pid 4

inverted page table
(only one)

Inverted Page Tables

Replace individual page tables with ONE global table

0
1
2
3
4

6
5

7
8
9

124

18

R2

G2

G1

R1

R3

R0

G0

R4

0

1

2

3

4

5

6

7

8

9

CPU

Ph
ys

ic
al

 M
em

or
y

(F
ra

m
es

)

pid 2
pid 2
pid 1

- -
pid 1
pid 3
pid 0
pid 0

- -
pid 4

inverted page table

1 8A4

logical address
issued by Red

1 8A4pid
tagged with Red pid

4 8A4

4

physical addr
seen by memory unit

How to detect illegal
addresses?

Inverted Page Tables: One “global” page table

0
1
2
3
4

6
5

7
8
9

125

IA-32 Segmentation and Paging (Combined)

● IA-32 architecture supports both segmentation and paging
○ Segmentation: Section 3.4.5 Intel System Programming Guide
○ Paging: Section 4.3 Intel System Programming Guide

● Address translation is a 2-step process
○ The CPU generates the logical address (14-bit segment id, 32-bit offset) + 2-bit

protection mode
○ Segmentation hardware translates the 46-bit address into 32-bit linear address

(Figure 3-5)
○ The paging hardware translates the 32-bit linear address to physical frame address

(Figures 4-2, 4-3)

● Total 16K (214) segments
○ 8K private segments (local)
○ 8K shared segments (global)

126

19

Intel Segmentation Hardware (IA-32)

CPU

13-bit s 32-bit d

logical
address s

(local|global)
descriptor table. Size = 16Kx8 bytes (L|G)DTR

size base addr

<

interrupt:
addr error

no

yes
32-bit d

g p

g: 1-bit global/local
p: 2-bit protection
dp: 2-bit protection

dp

8 bytes

32-bit linear address
(processed further by the paging unit)

32-bit
base address

127

20

