Contiguous Allocation

Contiguous Memory Allocation

- Goal: shared RAM by many processes
- Memory Partitions
 - Place one process in one partition
- Fixed-Sized Partitions
 - Location and size of each partition are predefined by the OS
- Variable-Sized Partitions
 - Location and size of each partition are determined on-demand, per process' request

Fixed-Size Partitions

Dynamic/Variable-Sized Partitions

Fixed-Sized Partitions

- RAM is divided into N partitions (of different sizes but fixed)
 Configured at boot time
- Only max N processes can reside in RAM at any time
 - One partition = one process
 - Fixed multiprogramming level
- When a process must be loaded to RAM to run, the system selects a free partition big enough to fit the process
 - \circ $\;$ When it terminates, the partition is free again
- (Internal) Fragmentation: unused portion (wasted space) of a partition
- Scheduling Issues? Ready Queue(s)?
- Advantages/disadvantages?

Internal Fragmentation = unused chairs

Fixed-Sized Partitions

	Option #1	Option #2
Constraint: Only one process per partition	Partition #1 (200M)	Partition #1 (200M)
 Process A (100M) begins Process B (310M) begins Process C (200M) begins Process B ends Process D (80M) begins Process A ends Process E (195M) begins Process E ends Process D ends Process C ends 	Partition #2 (300M)	Partition #2 (300M)
	Partition #3 (180M)	Partition #3 (180M)
Partitions are configured by the OS, may require system reboot to change	Partition #4 (400M)	Partition #4 (400M)
Partitions are configured by the OS, may require system reboot to change	Partition #4 (400M)

Variable-Sized Partitions

- Partitions are created **on-demand** as processes are loaded
 - Partition size = size of the process just loaded
 - No internal fragmentation
- The RAM beings as one giant hole (the entire free space)
- *But*, when a process terminates, it leaves a hole (free partition)
 Adjacent holes combine into a larger hole
- Necessary OS data structures
 - A list of **allocated partitions**
 - $\circ~$ A list of **holes** (free partitions) link the "holes" themselves into a linked list
- When a process must be loaded, the OS looks for a hole big enough for the process
 - Unused portion of the hole becomes a smaller hole

30

Variable-Sized Partitions

Variable-Sized Partitions (Total RAM 1200M)

A 100M	B 310M	C 200M	B ends	D 80M	or	80M
A (100M)		A (100M)				
1100 hole	B (310M)	B (310M)	310M hole	D (80M) 230M hole		310M hole
	790M hole	C (200M)	С (200М)	C (200M)		C (200M)
		590M hole	590M hole	590M hole		D (80M) 510M hole

33

Variable-Sized Partitions

Variable-Sized Partitions

34

Variable-Sized Partitions: List of Holes

Variable-Sized Partitions: Allocation Algo.

- Allocation Algorithms (how to select a free partition)
 - **First-Fit**: allocate the first hole big enough to accomodate the request. Start searching from the **beginning** of the hole list
 - **Next-Fit**: allocate the first hole big enough to accomodate the request. Start searching from the **last position of previous search**
 - **Best-Fit**: search the entire list (from the beginning) for the hole that gives **minimum leftover**
 - **Worst-Fit**: search the entire list (from the beginning) for the hole that gives **maximum leftover**
- Advantages/Disadvantages?
- Big-O of these algorithms?

Requests: 90M and then 40M

(In|Ex)ternal Fragmentation

- Internal Fragmentation: unused space within a partition (of Fixed-Sized Partitions)
- External Fragmentation: (of Variable-Sized Partitions)
 - holes are scattered throughout RAM
 - The TOTAL size of holes is big enough to hold the next process
 - none of the holes is big enough to hold the next process
 - Solution: run compaction algorithm (consolidates scattered holes into one free contiguous partition)

External Fragmentation & Relocation

50-percent rule: On average, fragmentation results in 1⁄3 of RAM wasted in holes

Wasted RAM Space in Holes?

