
Memory
Management

1

Illusion Reality

Swap Disk
2

You are the “only” user In the system You are sharing CPUs and RAM
with other users

Main Memory

Secondary Storage

1

3

(Main) Memory ≠≠ (Secondary) Storage

32 Gigabytes 1 Terabyte
(faster) (slower)

4

OS: The CPU Illusionist

Create an illusion of

● Each user program runs on the CPU(s) all the time
● Each user program owns the CPU(s) solely to him/herself

Create the illusion of

● A process resides in RAM all the time
● A process owns the entire RAM to itself
● The code (generated by the compiler) starts at address “zero”
● Code and data are contiguous in memory
● A process has access to (tera|peta|exa)bytes* of RAM space

 & Memory Illusionist

2

OS: Memory Management Facts

● Myth: A process owns the entire RAM to itself
○ Fact: your process has to share the RAM with many other processes
○ OS required feature: Memory Protection and Sharing

● Myth: A process resides in RAM all the time
○ Fact: at times a process may be swapped out of RAM
○ OS required feature: Process Relocation

● Myth: The code starts at address “zero”
○ Fact: The code may be loaded (and reloaded) at any memory address
○ OS required feature: load a process to a free memory region

● Myth: Code and data are contiguous in memory
○ Fact: Code and data may be split into segments/pages

● Myth: A process has access to terabyte* of memory space
○ Fact: the actual amount of space accessible to a process is the RAM size

5

System calls issued by a user process must
be handled by the OS.

Software interrupts issued by the process
allows the OS to intercept every system call

6

3

Accesses to RAM by a user process are
issued directly to the memory hardware.

The OS does NOT intercept memory accesses
BUT invalid memory access must trigger hardware interrupt!

7

8

CPU chip RAM chip
Memory read:

data = RAM[addr];

Memory write:

RAM[addr] = data

Ax: address pins
Dx: data pins

4

Required Hardware Feature #1:

Memory unit must trigger a hardware interrupt
on invalid memory access

9

Fact #1: a process must share the RAM with
other processes

10

5

Memory Speed Hierarchy

Type of
storage

Access Time
(Relative to CPU speed)

Storage Capacity

CPU registers 1x bytes

Cache up to 100x Kilobytes - Megabytes

RAM up to 1000x Gigabytes

11

Memory Sharing and Protection

● Several processes may concurrently reside in RAM
○ Each process has different size
○ Each process is placed at different memory location

● Sharing: divide the RAM into regions, place a process in one region
● Protection: prohibit one process to peek into other’s region

○ Protection violation must be (initially) detected/reported by the memory hardware,
and (later) handled by the OS

● Two special registers:
○ Base register: the starting address of a region
○ Limit register: size of the region
○ These two registers are saved/restored during a context-switch

12

6

Address Binding

● A user program (in C/C++/Java/…) refers to data/variables/functions
using symbolic names

● Compile-Time Address Binding
○ Compiler and linker bind each symbolic name to an address

● Load-Time Address Binding
○ The OS loads the binary executable to an open space in RAM

● Run-Time Address Binding
○ A process may be relocated at a different address
○ A process may call functions shared among several processes (the actual location

of these functions must be resolved at runtime)
■ Windows (.DLL) and Unix Shared Objects (.so)

13

Compiler Explorer
http://godbolt.org

14

7

From [C/C++/Java] to Process in RAM
int num;

int main() {
 num = 0xBEEF;
 while (num != 0);
 return 0;
}

4004f0: 55 push %rbp
4004f1: 48 89 e5 mov %rsp,%rbp
4004f4: c7 45 fc 00 00 00 00 movl 0,-4(%rbp)
 ; num = 0xBEEF
4004fb: c7 04 25 30 10 60 00 movl $0xBEEF,0x601030

 ; while (num != 0);
400506: 81 3c 25 30 10 60 00 cmpl 0,0x601030
400511: 0f 84 05 00 00 00 je 40051c
400517: e9 ea ff ff ff jmpq 400506

 ; return 0;
40051c: b8 00 00 00 00 mov 0,%eax
400521: 5d pop %rbp
400522: c3 retq

4004f0: 55 48 89 e5 c7 45 fc 00 00 00 00 c7 04 25 30 10
400500: 60 00 81 3c 25 30 10 60 00 0f 84 05 00 00 00 e9
400510: ea ff ff ff b8 00 00 00 00 5d c3

 Somewhere in RAM
55 48 89 e5 c7 45 fc 00
00 00 00 c7 04 25 30 10
60 00 81 3c 25 30 10 60
00 0f 84 05 00 00 00 e9
ea ff ff ff b8 00 00 00
00 5d c3Bin-executable is LOADED

into RAM by OS

Bin-executable is
produced by linker

15

Mapping Logical Add. to Physical Addr.

CPU RAM

“Black Box”
MMU:

Memory

Management
Unit

Logical/Virtual
Address

Physical
Address

● Logical/Virtual Address: address generated by the CPU
● Physical Address: address issued to the memory

16

8

Required Hardware Feature #1:
Memory unit must trigger interrupt (memory

fault) on all attempts to access invalid address

17

Required Hardware Feature #2:
Memory unit must automatically translate

logical addresses to physical addresses

18

9

Memory Control Unit

Base & Limit Reg (0-based Logical Addr)

CPU <

Base
register

Limit
register

RAM
Yes

data/instructions

No

Memory fault
interrupt

Logical/Virtual
Addresses

Physical
Addresses

19

400 bytes

Start of process
7100

400 7100

my_function() { }

210 bytes

Start of func
7310

210

Another Process
Start @ 3600

190 bytes

190 3600

Dynamic Loading/Linking

● Problem: Large Process Size, Limited RAM size
● Dynamic Loading (“Overlay”)

○ Routines needed by a process are loaded on-demand
○ No special OS support needed, the user process is responsible for loading its

overlay

● Dynamic Linking & Shared Libraries
○ Opposite variant of static linking
○ At linking time, the linker includes only a stub about the target functions in the

shared library (PLT = Procedure Linkage Table)
○ The actual linking to the shared libraries are postponed until runtime
○ When a new version of shared libraries becomes available, the user program can

invoke the newer version without recompilation/relinking

20

10

Runtime Binding (Windows DLL / Unix .so)
Default: linker generates a dynamic executable

clang myprogram.c -o myprog

gcc myprogram.c -o myprog

21

Use -static to tell linker to generate static executable

clang -static myprogram.c -o myprog

gcc -static myprogram.c -o myprog

Show shared object dependencies

ldd myprog

Fact #2: a process may be swapped out of RAM

22

11

Fact #3: a process may be loaded (or reloaded)
to any address

(different from assumed by the compiler)

23

12

