
CPU Scheduling

Scheduling
● Teaching Schedule

○ Instructor schedule: who & when
○ Classroom schedule: what & when

● Doctor Appointment: who & when
● Why do we need a schedule?
● Static vs. Dynamic/Responsive Scheduling Algorithm

○ Class schedule vs. Air Traffic Controller
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Thread/Process(or) Scheduling
● Dynamic scheduling

○ who/what: user processes competing for the same set of CPU(s)
○ when: when a process changes its state (state transition diagram)

● Scheduling Objective: keep the CPU occupied all the time! (high 
utilization)

○ User objective: (to save battery life) keeps the CPU idle most of the time (low utilization)
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Important Takeaway Concepts
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● The OS is a process(or) manager
● The OS must run its code on the same CPU(s) your 

processes run
● Hardware interrupts and syscalls enable OS to regain 

CPU control
● OS responsibility: virtualize the CPU

○ create an illusion that your process owns the CPU to itself throughout 
the process lifetime



Context Switching
Process A 

running

Kernel

Process B
running

Interrupt or syscall

Save A’s Context

Restore B’s Context

Kernel

Restore A’s Context

Save B’s Context

Interrupt or syscall

Process A (resumed)
Process A idle

Process B idle
Process B idle

context switching 
time
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SysCall Work by Kernel

Save Program Counter to A’s stack
//
// Other assembly instructions here
//

//
// Other assembly instructions here
//
Load Program Counter with address from B’s stack

Save CPU state of A

Restore B’s CPU state



CPU

Context Switch from Process A to Process B
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Gen Reg #1

Gen Reg #2

Gen Reg #M

⁞

Ctrl Reg #1

Ctrl Reg #2

⁞
Ctrl Reg #N

Prog. Counter

Prog Ctr

Reg1 
Reg2 

⁞

Reg M 

Ctrl Reg1 
Ctrl Reg2 

⁞

Ctrl RegN 

Prog Ctr

Reg1 
Reg2 

⁞

Reg M 

Ctrl Reg1 
Ctrl Reg2 

⁞

Ctrl RegN 

Process A Save Area 
(Stack)

Process B Save Area 
(Stack)

Save Regs Restore Regs

Step 1 Step 2

Top of Stack Top of Stack

Processes ~ Threads ~ Jobs

9

We will use these terms interchangeably throughout this chapter



When does the OS schedule our processes/threads?

10

State Transition Diagram

running

blocked

ready

terminatedcreated

created ↠ ready: the process just created, ready to use the CPU
ready ↠ running: this is the scheduler’s responsibility
running ↠ ready: the process time slice expired
running ↠ blocked: the process made a blocking system call (read(), sleep, I/O requests)
blocked ↠ ready: the blocking system call completed, the process is ready to use the CPU again
running ↠ terminated: the process exit normally (or with error)

THREE events that cause
CPU becomes “vacant” 

and then context switches
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Preemptive vs. Cooperative Scheduling
● Non-preemptive / Cooperative

○ Temporary monopoly: once the CPU is allocated to a user process, the process keeps it
○ Scheduling decisions are made only when the user processes voluntarily release the CPU
○ Transition Events: Running => Terminated and Running => Blocked

● Pre-emptive
○ Each process is assigned a time-slice to use the CPU
○ The system can preempt a running process and assign the CPU to another process
○ Transition Events: Running => Ready and Blocked => Ready
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State Transition Diagram

running

blocked

ready

terminatedcreated

ready ↠ running: the process is dispatched by the OS to use the CPU
running ↠ blocked: the process made a blocking system call (read(), sleep, or I/O requests….)
running ↠ terminated: the process exit normally (or with error)
created ↠ ready: the process just created, ready to use the CPU
running ↠ ready: the process time slice expired
blocked ↠ ready: the blocking system call completed, the process is ready to use the CPU again

5 events (out of 6) => 5 intervention points
● Two voluntary actions by the user program 

to “release” the CPU (COOPERATIVE 
SCHEDULERS)

● Three async actions that may initiate the 
OS logic to kick out the current occupant of 
the CPU (PREEMPTIVE SCHEDULERS)
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CPUs are fast
I/O devices are slooooow
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CPU Speed and Clock Cycle
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Speed Clock Cycle Operation Range

1Hz 1 sec

1 kilo Hz = 103Hz 10-3 seconds = 1 millisec I/O devices

1Mega Hz = 106Hz 10-6 seconds = 1 microsec

1 Giga Hz = 109Hz 10-9 seconds = 1 nanosec CPUs

1 Tera Hz = 1012Hz 10-12 seconds = 1 picosec

I/O devices can be 106 slower than CPU



Handling I/O Operations using DMA
● CPUs operate in nanoseconds while I/O devices operate in millisecond

○ CPU speed in GHz  (109 cycles/sec or 10-9 seconds/cycle)
○ HD access time in milliseconds, SSD access time in microseconds

● Direct handling of I/O operations by the CPUs lower the CPU utilization by 
many orders of magnitude (the CPU will spend most of its time WAITING)

● Delegate block-oriented I/O operations to dedicated I/O processors (DMA 
Controller / Direct Memory Access Controller)
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read (myfile_fd, &mybuff, sizeof(mybuff))

17

CPU RAM

Slooow
block-oriented

I/O Device
(HD or SSD)

system bus

myfile

mybuff

loop:
   ; read byte from I/O port 300
   inpb 0x300, reg1  ; CPU stalls
   ; move byte to buffer
   mov reg1, buffptr
   inc buffptr
   jmp loop

Without DMA!!!



read (myfile_fd, &mybuff, sizeof(mybuff))
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CPU RAM

Slooow
I/O Device

(HD or SSD)

system bus

myfile

mybuff

loop: // in DMA
   inpb 0x300, reg1
   mov reg1, buffptr
   inc buffptr
   jmp loop

DMA

Interrupt on I/O completion

// user_prog.cpp
ifstream myfile (“/mnt/dvd/bruno_mars.mp4”);
char mybuff[2048];
while (___) {

  myfile.read (2048, mybuff);

}

DMA (Direct Memory Access)

CPU

DVDDMA Controller

from: DVD
to  : 0XD0034
size: 2048

RAM

buff

0xD0034

RUNNING => BLOCKED

runs another process

BLOCKED => READY
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HW 
intr

https://www.youtube.com/watch?v=LjhCEhWiKXk#t=04m00s


Scheduler Queuing Model
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Queueing Model

Ready Q

DVD Q

CPU

Network Card Q

Semaphore Q
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running

blocked

ready

terminatedcreated



Linux Source Code: 
kernel/sched.c
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Process Execution Pattern
repeat {
  

}

I/O operations

Non I/O operations

repeat {
  

}

I/O operations

Non I/O operations

repeat {
  

}

I/O operations

Non I/O operations

I/O intensive process CPU intensive process

… - CPU burst - IO burst - CPU burst - IO burst - CPU burst - ...
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https://elixir.bootlin.com/linux/v2.6.39.4/source/kernel/sched.c


Types of Scheduling
● Short-Term Scheduling (or CPU Scheduler)

○ Decision to select a process (from the Ready Q) to use the CPU

● Medium-Term Scheduling
○ Decision to bring processes into memory (swapping in) or kick them out into swap space 

(swapping out)
○ Linux swap partition (type 82)

● Long-Term Scheduling
○ Decision to admit new processes into the system
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Scheduling Objectives
● Max. CPU utilization: Keeps the CPU 100% utilized
● Max. Throughput: keeps as many active processes as possible
● Min. Turnaround time: total lifetime of a process
● Min. Waiting time: the total amount of time spent by a process outside of 

CPU
○ Either waiting in the ready queue or blocked

● Min. Response Time: (for interactive processes) the time for the system to 
respond to a user request

● These objectives may be conflicting with each other
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Scheduling Algorithms
● Non-preemptive / Cooperative Algorithms: CPU can’t be stolen from the 

current process
○ First-Come First-Served
○ Shortest-Job-First

● Preemptive Algorithms: CPU can be stolen from the current process
○ Round-Robin
○ Shortest Remaining Time (preemptive version of SJF)
○ Multilevel Queue
○ Multilevel Feedback Queue
○ Priority Scheduling
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Non-Preemptive Scheduling Algorithms
Processes are allowed to finish their entire CPU burst

(without being kicked out of the CPU)
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First-Come First-Served
● Select the “oldest” (frontmost) processes from the ready queue
● A short processes may have to wait a loooong time before it can run
● Favors CPU-bound processes

○ I/O-bound processes have to wait for CPU-bound processes to complete
○ Convoy effect

■ One CPU-bound process and many I/O-bound processes
■ All the I/O bound processes trailing behind the CPU-bound process
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FIFO Convoy Effect
Ready Q

DVD Q

CPU

Network Card Q
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ONE CPU intensive job + MANY I/O intensive jobs



Examples & Gantt Chart
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FCFS Example
Process CPU Burst Time Arrival Time Wait Time Turnaround Time

P1 24 0

P2 3 2

P3 3 5
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0 8 102 4 126 3014 16 18 20 22 24 26 28

P1 P2 P3

P2 arrival P3 arrival

P2 wait time

P2 turnaround time



Shortest Job First
● Select a process with the shortest expected processing time/service time 

(or expected next CPU burst)
● Also called Shortest Process Next
● Short processes jump ahead of long processes (possibility of starvation)
● How to determine processing/service time

○ Batch jobs: supplied by the user
○ Interactive users: estimated the next CPU burst from the history of previous CPU bursts
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SJF Example
Process CPU Burst Time Arrival Wait Time Turnaround Time

P1 6 4

P2 8 0

P3 7 0

P4 3 5
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0 8 102 4 126 3014 16 18 20 22 24 26 28

P3 P4 P1

P2, P3 arrival P1 arrival

P4 arrival

P2



Implementation Issues
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36

How long does it take you to drive to 
campus tomorrow? 



SJF: Estimate (Next) Service Time

● A pure SJF algorithm is impossible to implement
○ The actual value of the next CPU burst is unknown. Estimation is required

● How to estimate the next CPU burst (𝛕n+1) from previous actual CPU 
bursts: t1, t2, t3, …, tn

● Simple Average 𝛕n+1 = (t1 + t2 + t3 + … + tn) / n
● Exponential Average vs. Simple Average
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Simple Average vs. Exponential Average
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As we accumulate more measurement (N >>) the 
weight on previous estimate (𝛕N) overpowers the 
weight on the recent measurement

s is fixed constant between 0 and 1.
The weights are not affected by the number of measurements

t
N+1



Simple Average vs. Exponential Average
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CPU burst: 7, 8, 2, 3, 4

Line Graph Plot Example

Preemptive Scheduling Algorithms
A process may be kicked-out of the CPU in the middle of its running 

state
(able to run only part of its CPU burst)
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https://docs.google.com/spreadsheets/d/1IiBJQV70UutCTVOVVX-gkOQFTPjgfurtZeMrubSfXs8/edit?usp=sharing


Shortest Remaining Time (SRT)
● Preemptive version of Shortest Job First

○ Shortest Remaining CPU burst

● The currently running process is preempted when a (new) process (re)enters 
the ready queue

● When a process is preempted (from the CPU), the process uses only a 
fraction of its CPU burst

○ Its remaining CPU burst will be used to dispatch it (later)
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State Transition Diagram

running

blocked

ready

terminatedcreated

5 events (out of 6) => 5 intervention points
● Two voluntary actions by the user program 

to “release” the CPU (COOPERATIVE 
SCHEDULERS)

● Three async actions that may initiate the 
OS scheduler to kick out the current 
occupant of the CPU (PREEMPTIVE 
SCHEDULERS)
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SRT Example
Process CPU Burst Time Arrival Time Wait Time

A 8 0

B 5 2

C 9 4

D 3 5
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0 8 102 4 126 14 16 18 20 22 24 26

A B C

RT(A) = 6, RT(B) = 5

RT(A) = 8

Arrival of C:
RT(A) = 6
RT(B) = 3
RT(C) = 9

Arrival of D: 
RT(A) = 6
RT(B) =2
RT(C) = 9
RT(D) = 3

D A

Completion of B:
RT(A) = 6
RT(C) = 9
RT(D) = 3

B B

Completion of D: 
RT(A) = 6
RT(C) = 9

Completion of A: 
RT(C) = 9

Gantt Chart: Theoretical vs. “Reality”
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A B C

Arrival of C:
RT(A) = 6
RT(B) = 3
RT(C) = 9

Arrival of D: 
RT(A) = 6
RT(B) = 2
RT(C) = 9
RT(D) = 3

D AB B

Completion of D: 
RT(A) = 6
RT(C) = 9

Completion of A: 
RT(C) = 9

Scheduler code execution 



Round Robin
● The OS sets a fixed time quantum (in millisecs) for all the processes to use 

the CPU
○ The OS sets a timer (in hardware)
○ Processes with CPU burst > quantum will be preempted (by the timer interrupt) and 

placed back to the ready queue
○ Processes with CPU burst < quantum will continue to do I/O (use its I/O burst)

● CPU-bound processes will likely use up all the assigned quantum time
● I/O-bound processes will use only a fraction of the quantum time  and 

then blocked for I/O
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RR Example
P1: 24 units P2: 3 units P3: 3 units
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0 8 102 4 126 3014 16 18 20 22 24 26 28

P1

Quantum = 4

P2 P3 P1

P1 P2 P3 P1 P2 P3 10 x 2 units of P1
Quantum = 2

Quantum = 1

P1 P2 P3 P1 P2 P3 P1 P2 P3 21 x 1 unit of P1

P1 P1 P1 P1



Round Robin Quantum Time
● Too short: too much overhead for context switching

○ Quantum time should be relatively large compared to context switch time

● Too long: RR behaves like FCFS
● Perform better for interactive systems (ex: your EOS GUI sessions)

○ Interactive sessions: short CPU bursts, and long I/O bursts
○ Interactive sessions are able to finish all their CPU burst without being preempted

● However, in a mixed system
○ I/O-bound processes will suffer (blocked I/O queue most of the time). 

■ Quantum time is <<< typical I/O time
○ CPU-bound processes will monopolize the CPU (in the Ready Q most of the time, possibly 

ahead of I/O-bound processes)
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Priority-Based Scheduling
(must be preemptive)

48



Multilevel Queue (1)
● Mixing CPU-intensive and I/O intensive processes in one queue does not 

seem to be a good idea
● Use several ready queues

○ assign different priority levels to the queues

● Assign user processes permanently to one of the ready queues
● Each queue may run its own scheduling algorithm
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Multilevel Queue (2)
● How to “schedule” the queues (which queue to select processes from)?

○ Fixed-priority (preemptive) scheduling
■ dispatch processes from a lower priority queue when none can be dispatched from 

a higher level ones)
○ Time-sliced among the queues

■ Assign a certain “time slice” to each queue
■ Continue to dispatch from one queue until time slice for one queue expires, then 

move on to the lower queue

50



Multilevel Feedback Queue Scheduling
● A variant that combines Round Robin (RR) and Multilevel Queue (MQ)
● Unlike MQ, MFQ allows processes to migrate among different queues

○ Promoted to a queue of higher priority
○ Demoted to a queue of lower priority

● Longer RR quantum time for lower priority queues
● Shorter RR quantum time for higher priority queues

Used in Windows NT
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Multilevel Feedback Queue: Naughty or Nice?

52



Multilevel Feedback Queue: Naughty or Nice?

CPU

Promoted (“nice”): use very little CPU

Demoted (“naughty”): use too much CPU

highest prio: RR 
with small quantum

lower prio: RR with 
longer quantum

lowest prio: FCFS (RR 
with infinite quantum)
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Also: periodic priority aging 
throughout the ready queues

Multilevel Feedback Queue Scheduling
● Promote processes that use too little CPU time (move them to a higher 

priority queue)
● Penalize processes that use too much CPU time (move them to a lower 

priority queue)
● CPU intensive processes will eventually demote into the lowest prio Q
● I/O intensive processes will eventually promote to the highest prio Q
● Priority aging: avoids starvation
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Priority Scheduling
● Select processes with higher priority first (before any other processes)
● Priority scheduler is ALWAYS preemptive. Why?
● Two opposing interpretations of “priority numbers”

○ Lower numbers mean higher priority. (like TODO list)
○ Higher numbers mean higher priority. (like GPA)

● Risk: Processes with lower priority may starve
○ Solution: apply priority aging to avoid starvation (elevate priority level periodically)
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Thread Scheduling
● KLTs are scheduled by the OS
● ULTs are managed by the thread library
● ULTs must first be mapped to a KLT before it can run on a CPU
● Mapping Models

○ One-to-One => All threads in a process are scheduled by the OS
○ Many-to-One or Many-to-Few => Not all threads are schedulable by the OS

56



Multiprocessor Scheduling
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Multiprocessor Scheduling Issues
● Where to run the OS code?

○ Asymmetric Multiprocessing: OS code runs only on specific CPUs
○ Symmetric Multiprocessing: OS code can run on any CPUs

● Load balancing, Process Migration, and Processor Affinity
○ Load balancing requires process migrations from one CPU to another
○ Costly Cache Repopulation
○ Processor Affinity: ability to bind a process to a particular CPU (in a multi CPU system)
○ Conflicting objectives between load balancing and processor affinity
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Global vs. Partitioned

CPU 0

CPU 1

CPU 2

CPU 3

Process Queue

CPU 0

CPU 1

CPU 2

CPU 3

Process Queue 0

Process Queue 1

Process Queue 2

Process Queue 3

Global: Shared Process Queue Partitioned: Dedicated Process Queues

Memory Stall: CPUs are faster than RAMs
Read Request 
issued by CPU

Data Bus

memory stall, CPU must wait
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Multicore Scheduling Issues
Hardware Features (but also scheduling issues)

● An N-core CPU appears to be N separate CPUs to the OS
● To keep CPU cores busy during a memory stall, CPU architects design 

hardware multithreading. (Intel Hyper-Threading technology)
○ Each core now appears as TWO separate CPUs to the OS
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Real-Time Scheduling:
Scheduling with Time Constraints

Goal: make the OS respond within a given time limit
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Time Constraints on Tasks
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● Start time:  tasks must begin at or no later than a specific time instance
● End time (deadline): tasks must complete at or no later than a specific 

time instance
● Periodic: tasks must repeat at a specific rate
● Examples

○ Sustain “continuous” audio/video stream (YouTube streaming, Zoom video streaming)
Periodic and deadline constraints

○ Automotive control: anti-lock brakes Start, End (deadline), and Periodic constraints
○ Aircraft Control: fly-by-wire Start time constraints
○ Autonomous Car: vehicle response to sensory input Start time constraints

Real-Time Systems: Categories
● Soft RT Systems

○ Guarantee that critical processes will be given preference over non-critical ones
○ But do not guarantee time constraints

● Hard RT Systems
○ Must guarantee that tasks be serviced by its deadline
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Real-Time Schedulers
● Objective: schedule tasks to minimize latency
● Required features of an RTS

○ Priority-based
○ Preemptive  (when a higher priority process becomes available, lower priority 

processes are preempted from the CPU)

● Priority-based + Preemptive RTS only guarantee soft real-time
● RT Scheduling Algorithms

○ Rate-Monotonic Scheduler
○ Earliest-Deadline First Scheduler

68

Rate-Monotonic Schedulers (RMS)
Rate: how frequently a periodic task uses the CPU
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Model for RMS
● Tasks/processes are assumed to be periodic with a fixed CPU burst

○ CPU burst and “I/O bursts” are two fixed values

● Time Constraint (Deadline): Processes must be completed within a given 
time limit

● Each process is parameterized by these three numbers
○ (CPU burst, periodic interval, time constraint/deadline)
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IDEAL Execution Pattern of a Periodic Task

CPU burst CPU burst CPU burst

period

t

period period

t t
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Periodic Tasks with deadline

CPU burst CPU burst CPU burst

period

t

deadline

t t

missed the deadlinewithin deadline
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The above timing diagram shows an IDEAL case where the task runs without being 
preempted.

In actual RT scheduling algorithms, processes are preempted and CPU bursts 
may split into several chunks of execution

deadline deadline

within deadline

Execution Pattern of Two Periodic Processes

P1 P1 P1

period period period

P2

Rate-Monotonic Scheduler:
shorter period ⇒ more frequent use of CPU ⇒ higher priority

longer period ⇒ less frequent CPU use ⇒ lower priority

period

73

P2 P2 P2 P2

Low priority

High priority



Rate-Monotonic Scheduling Algorithm
● Assign static priority, inverse of the task period

○ Longer period (lower rate of CPU use) => lower priority
○ Shorter period (higher of CPU use) => higher priority

● Preemptive scheduling algorithm
○ Tasks with lower priority are preempted (from the CPU) if a higher priority task becomes 

ready/available to run
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RMS Examples
Process Period Deadline CPU burst % of CPU Utilization (CPU/Period)

P1 50 50 20 40% (= 20/50)

P2 100 100 35 35% (= 35/100)
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0 20010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Acceptable execution range of P1

Acceptable execution range of P2

P1 P2 P1

P2 was interrupted at 50 by P1 (higher priority), 
P2 continues with its remaining 5 units of CPU at 70



RMS Examples
Process Period Deadline CPU burst % of CPU Utilization (CPU/Period)

P1 50 50 40 80% (= 40/50)

P2 100 100 35 35% (= 35/100)

Total CPU utilization = 80% + 35% = 115% > 100%

Impossible to schedule the two periodic tasks!

RMS Examples
Process Period Deadline CPU burst % of CPU Utilization (CPU/Period)

P1 50 50 25 50% (= 25/50)

P2 80 80 35 43.75% (= 35/80)
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0 20010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Acceptable execution range of P1

Acceptable execution range of P2

P1 P2 P1 P2

P2 was interrupted at 50 by P1 (higher priority), 
P2 missed the deadline at 80



Earliest Deadline First
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Assignment #1
Due: Apr 12

Assignment #2
Due: Mar 27

Earliest-Deadline First (EDF)
● Assign priority dynamically based on the next deadline

○ Earlier deadline => higher priority
○ Later deadline => lower priority

● Theoretically optimal algorithm (CPU utilization may be close to 100%)
● The algorithm also works for non-periodic processes and variable CPU 

bursts, but the next deadline must be announced to the system
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EDF Examples
Process Period Deadline CPU burst

A 50 50 25

B 80 80 35
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0 20010 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Acceptable execution range of A

Acceptable execution range of B

A.1 B.1 A.2B.1

At time 50:
B was preempted (due to 2nd arrival of A).
nextDL(A) = 100, nextDL(B) = 80
B has higher priority (resume)

1st deadline 2nd deadline2nd deadline
1st deadline

3rd deadline

A
2

At time 60: only A is available
At time 80: 
A was preempted (due to 2nd arrival of B).
nextDL(A) = 100, nextDL(B) = 160
A has higher priority (resume)

B.2

At time 100:
B was preempted (due to 3nd arrival of A).
nextDL(A) = 150, nextDL(B) = 160
A has higher priority (dispatched)

A.3 B.2 A.4

Linux Scheduling
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O(1) Scheduler in Linux 2.6.8
● Data structures: array of linked lists (runqueue)

○ arr[0] is the list of highest priority processes
○ arr[N-1] is the list of lowest priority processes
○ One linked list holds processes of the same priority

● Two copies of runqueue: active and expired
○ When a process did not use all its quantum, half of the unused quantum is added to the 

next round (and the process stays in the “active” runqueue)
○ When a process used all its quantum,  it is moved from active to expire
○ When the active run queue is “empty”, swap active and expired
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Linux 2.6.23: Completely Fair Scheduler
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● Fairness: with N processes in the system, each process should receive 1/N 
of the CPU time

● On an ideal multitasking CPU, these N processes would run in parallel at 
equal speed (1/N of the CPU speed)

○ Impossible to run them in parallel on real CPUs

● Approach for implementing a fair scheduler
○ Virtual runtime: the amount of CPU that a process should have gotten on an ideal 

multitasking CPU



Linux: Completely Fair Scheduler
● Similar idea as the Multilevel Feedback Queue

○ MFQ: promote / demote priority levels based on process execution pattern
○ CFS: adjust virtual runtime based on process execution pattern

● Nice value: -20 (high priority) to 0 (normal priority) to +19 (low priority)
○ Default nice value is zero (normal priority)
○ Lower number means high priority

● Preemptive scheduler (because of priority based algorithm)
● Processes are organized into a Red-Black tree (with virtual runtime as key)
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● Runtime decay rate calculated from the process nice value
○ Nice < 0 (high priority): decay rate < 1.0
○ Nice = 0 (normal priority): no decay
○ Nice > 0 (low priority): decay rate > 1.0

● Virtual runtime vs. Physical runtime
○ Physical runtime: total CPU time that has been used by this processes
○ Virtual runtime: physical runtime after being adjusted by the decay rate

■ Lower priority processes: virtual runtime > physical runtime
■ Higher priority processes: virtual runtime < physical runtime
■ Normal priority processes: virtual runtime = physical runtime

● CFS selects the process with the smallest virtual runtime

Linux CFS: separating “naughty” from “nice”
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CFS: Mix of I/O bound and CPU bound jobs
● Execution patterns

○ I/O bound jobs use only a fraction of its quantum (before it blocks for I/O)
○ CPU bound jobs will exhaust its entire quantum (before it is preempted)

● Virtual runtime of I/O bound jobs will be smaller than CPU bound jobs
○ I/O bound jobs are dispatched ahead of CPU bound jobs

● Starvation is avoided
○ Processes that have not used CPU will have lower physical runtime value (hence lower 

virtual runtime)
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● Priority range 0-139 (static priority number)
○ Recall: lower number means higher priority in Linux

● Real-time tasks: 0-99
○ Soft Realtime Scheduler (does not guarantee deadline)
○ Can be scheduled using either RR or preemptive FCFS
○ POSIX Thread options: SCHED_RR or SCHED_FIFO
○ Preemptive FCFS: a variant of FCFS where preemption allowed by higher prio processes

● Normal tasks: 100-139
○ Normal tasks with nice value -20 are assigned priority value 100
○ Normal tasks with nice value +19 are assigned priority value 139

Linux CFS: Real-Time Scheduling
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Linux: Static Priority vs. Dynamic Priority
● Static priority [0,139]
● Dynamic priority = func (static_priority, average_sleep_time)

○ Adjustment range: [-5, +5]
○ Sleeping too much => increase dynamic priority
○ Working too much => decrease dynamic priority
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Windows Scheduler
● 32 priority levels

○ Smaller number means lower priority
○ Levels 1-15 for “variable class”
○ Levels 16-31 for “real-time class”

● Six Base Priority Classes
○ IDLE (4), BELOW_NORMAL(6), NORMAL (8), ABOVE_NORMAL (10), HIGH_PRIORITY (13), 

REALTIME (24)

● Seven Relative Priority Classes
○ IDLE, LOWEST, BELOW_NORMAL, NORMAL, ABOVE_NORMAL, HIGHEST, TIME_CRITICAL

● Table 6.22 in textbook
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