
The following assembly code used in lecture shows a potential race condition when two processes run
concurrently to update a shared bank account balance (acct). Assuming an initial value of $1,000, the
desired outcome is a final account balance of $480 (= $1000 - $500 - $20)

Process 1: acct = acct - 20 Process 2: acct = acct - 500

1: mov %r3,acct
2: sub %r3,20
3: mov acct,%r3

1: mov %r4,acct
2: sub %r4,500
3: mov acct,%r4

The following scenario of concurrent execution of both processes involves two context switches that end
up with a final balance of $980.

Process 1: acct = acct - 20 Process 2: acct = acct - 500

1: mov %r3,acct
2: sub %r3,20

(INTR & Context Switch)

3: mov acct,%r3

1: mov %r4,acct
2: sub %r4,500
3: mov acct,%r4

(INTR & Context Switch)

Show two additional scenarios of concurrent execution that yield incorrect balance in the shared account.
Express your answer using a similar format shown above. Be clear to indicate where interrupts occur.
Avoid using “interrupted AT line 3” (it is not clear where you mean before line 3 or after line 3)

(1) (3 pts) Involving three context switches (your answer should have 9 lines of “event”)

(2) (4 pts) Involving four context switches (you answer should have 10 lines of “event”)

