
Monitors

137

Monitors

● Design: similar to a Java/C++ class
○ private attributes/variables
○ private/public functions

● Condition Variables:
○ Special variables for synchronization; with two operations: [m_]wait() and [m_]signal()
○ They are NOT boolean variables
○ When the context is unclear, the m_ prefix will be used to distinguish between semaphore

or condition variable operations

● A user process enters the monitor by invoking its public functions
○ Only one process can enter the monitor (hence invoke the monitor function) at any

time

138

1

Monitors: Condition Variables

condition z;

● z.wait(): ALWAYS suspend the process who invokes this operation until
another process invokes z.signal(). The monitor is now available again
for use by another process

● z.signal(): resumes exactly ONE process. If no process is currently
suspended, the operation has no effect.

● Condition variables ARE NOT boolean variables

139

Monitor Architecture
● Queues

○ one entry queue: for holding processes about to invoke one of the monitor functions
○ condition variable queues (one queue per condition variable) for holding processes

suspended on the condition var
○ urgent queue: temporary spot for resolving cv.signal() issue (details later)

● Functions
○ public function implementing synchronization logic
○ initialization function

● Data

140

2

Big room of capacity ONE

Architecture of a (vacant) Monitor

function1

 door_open.wait();

function2

 door_open.signal();

init function

entry queue

door_open_q

pwr_up_q

item_avail_q

other_q

URGENT_Q

141

Big room of capacity ONE

Architecture of a Hypothetical Monitor

function1

 door_open.wait();

function2

 door_open.signal();

init function

entry queue

door_open_q

pwr_up_q

item_avail_q

other_q

URGENT_Q

142

3

● Process P (inside the monitor) is executing cv.signal(), process Q is at
the front of the cv’s queue, and it is now ready to resume its cv.wait()

● Two processes (P and Q) are now potentially inside the monitor
○ Set a policy that cv.signal() must be the last statement executed in a monitor function
○ When cv.signal() is not the last statement:

■ signal-and-continue: let P continue, move Q to the urgent queue
■ signal-and-wait: move P to the urgent queue, let Q resume its cv.wait()

○ Resume process in the urgent queue as soon as monitor is empty

Monitors: cv.signal() issue

143

Semaphores vs. Monitors

● sem.wait() may get blocked
● sem.signal() is memorized

(semaphore value is incremented)

● cv.wait() is always blocked
● cv.signal() is NOT memorized, it has

no effect when the cv queue is empty

144

4

Writing Monitor Solutions

● Write (public) monitor functions to be called for entry section and exit
section

○ The entry section code typically invokes cv.wait()
○ The exit section code typically invokes cv.signal()
○ Write private helper functions when needed

● Examples (in a separate handout)
○ Dining Philosophers: attemptToDine (entry section) and finishDining (exit section)
○ Readers/Writer: startReading, startWriting (entry sections) and finishReading,

finishWriting (exit sections)

145

Implementing a Monitor using Semaphores

● Requirements
a. At most one process at a time inside a monitor (at most one process can CALL any

monitor public function)
b. Processes can be blocked on a condition variable
c. Processes can be blocked on the urgent Q and should be dequed ahead of other

processes (urgent Q has higher prio)
d. Calling wait() on a condition variable ALWAYS block its caller

● How many semaphores do we need?
● We will use “modern” semaphores (a queue is already builtin!)

146

5

Semaphore Requirements for Monitors

● A binary semaphore (mutex = 1): mutual exclusive access to monitor
functions

● A binary semaphore (urgent = 0): block a process in the urgent queue
● For each condition variable cond_var

○ int cv_count = 0; /* the number of processes blocked on the cond-var */
○ semaphore cv_sem = 0; /* hold blocked processes inside the semaphore’s queue*/

147

Monitor Functions: PRELUDE and POSTLUDE
(first attempt)

// prelude
mutex.wait();

// postlude
mutex.signal();

// function body

 cv_x.m_wait();

 cv_y.m_signal()

Requirement (a)
at most ONE process can invoke any monitor function

● m_wait() and m_signal() are operations on
CONDITION VARS

● wait() and signal() are operations on
SEMAPHORE

mutex is a SEMAPHORE
cv_x, cv_y are CONDITION VARIABLES

148

6

Monitor Functions: PRELUDE and POSTLUDE
// prelude
mutex.wait();

// postlude
if (urgent_count > 0)
 urgent.signal();
else
 mutex.signal();

// function body

 cv_x.m_wait();

 cv_y.m_signal()

Requirement(a)
at most ONE process can invoke any monitor function

Requirement (c)
Processes in Urgent Q have a higher priority to (re)enter the
monitor

mutex, urgent are SEMAPHORES
cv_x, cv_y are CONDITION VARIABLES

149

Monitor Condition Variables

● cv.m_signal() has no affect when no one is blocked on cv.m_wait()
● When there are several processes blocked on cv.m_wait(), calling

cv.m_signal() will release only ONE process
● cv.m_wait() ALWAYS block its caller

150

7

Implementation of cv.m_wait() and cv.m_signal()
function1()

 cv.m_wait();

cv_sem_Q

URGENT_Q

// cv.m_wait()
cv_count++;
if (urgent_count > 0)
 urgent.signal();
else
 mutex.signal();
cv_sem.wait();
cv_count--;

function2()

 cv.m_signal();

// cv.m_signal()
if (cv_count > 0) {
 urgent_count++;
 cv_sem.signal();
 urgent.wait();
 urgent_count--;
}

Semaphore cv_sem = 0; /* a “barrier” */
int cv_count = 0mutex.wait();

if (urgent_count > 0)
 urgent.signal();
else
 mutex.signal();

mutex.wait();

if (urgent_count > 0)
 urgent.signal();
else
 mutex.signal();

mutex_q

151

Java Synchronized Methods
public class Database {
 public void methodOne() {

 }

 public synchronized void methodTwo() {

 }
}

// One.java
Database db = new Database();

class Worker implements Runnable {
 public void run() {

 db.methodTwo();
 }
}

//main: two concurrent threads
Thread one = new Worker().start();
Thread two = new Worker().start();

152

8

pthread mutex (binary semaphores)
#include <pthread.h>
pthread_mutex_t mtx;

void* myfunc (void * ___) {

 pthread_mutex_lock (&mtx);
 /* critical section here */
 pthread_mutex_unlock (&mtx);

}

int main() {
 pthread_mutex_init (&mtx, NULL);

 pthread_create (_, _, myfunc, _);
}

#include <pthread.h>
pthread_cond_t cv;
pthread_mutex_t mtx;

void* func1 (void * ___) {

 pthread_cond_wait (&mtx, &cv);

}
void* func2 (void * ___) {

 pthread_mutex_signal (&cv);

}

int main() {
 pthread_cond_init (&cv, NULL);

 pthread_create (_, _, func1, _);
 pthread_create (_, _, func2, _);
}

153

POSIX semaphores (counting semaphores)
#include <semaphore.h>
sem_t mtx;
void * myfunc (void *arg) {

 sem_wait (&mtx);
 // mutually exclusive code here
 sem_post (&mtx);

}

int main() {
 sem_init (&mtx, 0, init_val); /* 0:shared among threads */

 pthread_create (____, ___, myfunc, ____);
}

154

9

SysV Semaphores

● semget(): create one or more semaphores
● semctl()

○ set initial value
○ semaphore management (remove, query status, ….)

● semop(): modify semaphore value (for implementing lock/unlock or
wait/signal)

155

C++11 Synchronization

● #include <mutex>

● #include <condition_variable>

● std::mutex: binary semaphores
● std::condition_variable: monitor semaphore variables
● Examples

○ Implementation of counting semaphores using std::mutex
○ Producer-Consumer (semaphore solution)
○ Implementation of monitor using semaphores
○ Dining-Philosopher (monitor solution)

156

10

