Deadlock

126

127

Dining (Chinese) Philosophers

N (Chinese) philosophers are either
thinking or dining at a round table

o PO,P1,P2, ...
They share chopsticks with their
neighbors

o Chopsticks: CO, C1, C2, ...
Each philosopher needs TWO chopsticks
to start dining
P, requires “left” chopstick C, and “right”
chopstick C, , ,

131

Dining Philosophers (First Attempt)

/* Philosopher-k */ . .
e Interruptible points

e Each philosopher holding a left
chopstick, while waiting for the
right chopstick

while (true) {

MChOP[k] .wait(); / left chopstick
chop[k+1].wait(); // right chopstick, (k+1) mod 5

/* DINE */

chop[k].signal(); DEADLOCK

chop[k+1].signal();

/* THINK */

What could go wrong with the above algorithm?

132

Deadlock Formalism

133

Road Deadlock (“Process” & “Resource”)

-<__
<

.

134

Deadlock

e Two or more processes (or threads) are in a deadlock state when they are
waiting for an event that can only be triggered by these processes alone
e OQur focus
o Afinite number of resources (M) to be distributed among N competing processes
e Resource Use pattern
o Each process follows this sequence: request - use - release

136

Necessary vs. Sufficient Condition

A = B

sufficient necessary

A=B
e Reads “(if) A (then) B”
o Ais the sufficient condition for B

o Bisthe necessary condition for A

e Wecan't concludeB= A

e But we can infer its contrapositive
not B = not A

“Live in MI" = “Latitude > 41° N”

e (if) you live in Ml (then) your latitude is at least 41°

e We can't conclude

(if) “latitude is at least 41°" then “you live in MI”

However, “if (oIS [@ELe [RFR AR EI AR then “you

DON'T live in MIg

137

Logical Opposite

Which one is the logical opposite of “A and B"?

1. notAandnotB
2. notAornotB
3. not(AorB)

Notations:
e AandB AANB
e PorQ PVAQ

e notS =S

138

Necessary Conditions for Deadlock

When a system is in a deadlock state, then ALL of the following (necessary)
conditions must be true

° (ME): resources are held in a non-sharable mode
(NP): resources cannot be preempted from its current
holder
° (HW): a process must be holding (at least) a resource
while waiting to acquire more resources
° (CW): there is a set of processes PO, P1, ..., Pn such that

PO is waiting for a resource held by P1, P1 is waiting for a resource held
by P2,, and Pn is waiting for a resource held by PO

139

DL = ME and NP and HW and CW

140

DL = ME and HW and NP and (W

141

Deadlock Prevention Mechanisms

e Deny
o Do not allow process to use resources exclusively, force them to always share
e Deny (Allow Preemption)
o Allow resources to be preempted/”stolen” from their current holder
e Deny (Allow Hold-only or Allow Wait-Only)
o Enforce all-or-nothing policy, a process that requires multiple resources must acquire
them all at the same time
e Deny

o Enforce resource-ordering policy. Assign resources into different “rings/levels”. Resource
must be requested in increasing order of these rings/levels

142

Resource Ordering Policy

1. Class 0: USB Stick and RAM
2. Class 1: Printer
3. Class 2: GPU

Policy: processes must request the resources in increasing class number

Example: Process X needs both USB stick and GPU

1. : request(USB), request(GPU)
2. Deny: request(GPU), request(USB)

143

Resource Ordering Policy

1. Class 0: USB Stick and RAM
2. Class 1: Printer
3. Class 2: GPU

Policy: Resources in same class number must be requested together
Example: Process Y needs both USB stick and RAM

1. Deny: request(USR), request(RAM)
2. Deny: request(RAM), request(USB)
3. : request(USB, RAM)

144

Dining Philosophers Deadlock Prevention

e Allow at most N-1 philosophers to dine simultaneously

e Apply asymmetric chopstick pick up order
o Left-Handed philosophers: pick left chopstick first
o Right-Handed Philosophers: pick right chopstick first

e Other strategies?

145

Dining Philosophers: Limit N-1 diners

/* (prone to deadlock) */ /* Philosopher-k (deadlock free) */

while (true) { th%e (tPU?i(§
iner.wait();

chop[k].wait(); / left chopstick chop[k].wait(); // left chopstick

chop[k+1].wait(); / right chopstick
/* DINE */

chop[k].signal();
chop[k+1].signal();

/* think */

chop[k+1].wait(); // right chopstick
/* DINE */

chop[k].signal();
chop[k+1].signal();
diner.signal();

/* think */

} }

Semaphore chop[5]
Semaphore diner =

= {1) 1) 1) 1) 1};
4;

146

Cigarette Smokers Problem

Four concurrent threads: one agent and three smokers

Each smoker needs three ingredients: paper, tobacco, and a match
The agent has infinite amount of ALL the ingredients

Each smoker has infinite amount of ONLY ONE ingredient

The agent randomly select two ingredients and make them available to
the smokers

147

Cigarette Smokers (unsynchronized code)

Sp: smoker with paper (needs tobacco and match)
St: smoker with tobacco (needs paper and match)
Sm: smoker with match (need paper and tobacco)

// agent
while (1) {

/* two distinct items */
(t1,t2) = rnd_two_items();

/
place_supplies (t1, t2); { Pa Table .
A

¥

the table can hold ONLY TWO items max

148

Resource Allocation Graph

e Nodes: processes or resources
e Edges: request edges / assignment edges

R 3 instances of resource R process P
b P
(]
(]
R, <_/B_.
P
° P \/ S
®)
P requests two instances of R | One instance of R is assigned to P I
REQUEST EDGE ASSIGNMENT/ALLOCATION EDGE

149

Resource Allocation Graph

P1 (blocked): is holding one instance of

o R2, and is waiting for one instance of R1
/ (can be granted immediately)

P2 (blocked): is holding one instance of

R1 and is waiting for one instance of R2

R1

P3 (blocked): is waiting for one instance

R2 of R2
® P2 and P3 compete for R2

Can’t conclude: Cycle = Deadlock

Can’t conclude CW = DL

150

Resource Allocation Graph

o=

P1 (ready/running): is holding one
instance of R2, and one instance of R1

P2 (ready/running): is holding one
instance of R1 and is waiting for one
instance of R2

P3 (blocked): is waiting for one
instance of R2 (can’t be immediately
granted)

Can conclude: No CW = No DL

151

Resource Allocation Graph

P1 (blocked)
P2 (blocked)
P3 (ready/running)

152

Resource Allocation Graph
R1‘\€R3‘\ P1 (blocked)

P2 (blocked)
P3 (blocked)

153

