
Deadlock

126

Tasks Using Multiple Resources

127

128

Dining (Chinese) Philosophers

P1 P0

P2

P
3

P4

● N (Chinese) philosophers are either
thinking or dining at a round table

○ P0, P1, P2, ….
● They share chopsticks with their

neighbors
○ Chopsticks: C0, C1, C2, …

● Each philosopher needs TWO chopsticks
to start dining

● Pk requires “left” chopstick Ck and “right”
chopstick Ck+1

C2

C1

C4C3

C0

131

Dining Philosophers (First Attempt)
/* Philosopher-k */

while (true) {

 chop[k].wait(); // left chopstick
 chop[k+1].wait(); // right chopstick, (k+1) mod 5

 /* DINE */

 chop[k].signal();
 chop[k+1].signal();

 /* THINK */
}

I.P.

● Interruptible points
● Each philosopher holding a left

chopstick, while waiting for the
right chopstick

DEADLOCK

What could go wrong with the above algorithm?

132

Deadlock Formalism

133

134

Road Deadlock (“Process” & “Resource”)

Deadlock

● Two or more processes (or threads) are in a deadlock state when they are
waiting for an event that can only be triggered by these processes alone

● Our focus
○ A finite number of resources (M) to be distributed among N competing processes

● Resource Use pattern
○ Each process follows this sequence: request - use - release

136

Necessary vs. Sufficient Condition

A ⇒ B

● Reads “(if) A (then) B”
○ A is the sufficient condition for B
○ B is the necessary condition for A

● We can’t conclude B ⇒ A

● But we can infer its contrapositive
 not B ⇒ not A

“Live in MI” ⇒ “Latitude ≥ 41° N”

● (if) you live in MI (then) your latitude is at least 41°

● We can’t conclude
(if) “latitude is at least 41°" then “you live in MI”

● However, “if your latitude is less than 41°” then “you
DON’T live in MI“

137

A ⇒ B
sufficient necessary

Logical Opposite

Which one is the logical opposite of “A and B”?

1. not A and not B
2. not A or not B
3. not (A or B)

Notations:

● A and B A ⋀ B
● P or Q P ∨ Q
● not S ¬S

138

Necessary Conditions for Deadlock
When a system is in a deadlock state, then ALL of the following (necessary)
conditions must be true

● Mutual Exclusion (ME): resources are held in a non-sharable mode
● No-Preemption (NP): resources cannot be preempted from its current

holder
● Hold & Wait (HW): a process must be holding (at least) a resource

while waiting to acquire more resources
● Circular Wait (CW): there is a set of processes P0, P1, …, Pn such that

P0 is waiting for a resource held by P1, P1 is waiting for a resource held
by P2, …., and Pn is waiting for a resource held by P0

139

Resource

Process

DL ⇒ ME and NP and HW and CW

140

DL ⇒ ME and HW and NP and CW

Fallacy: ME ⋀ HW ⋀ NP ⋀ CW⇒ DL

ContraPos: ¬ME or ¬HW or ¬NP or ¬CW ⇒ ¬DL

141

Deadlock Prevention Mechanisms

● Deny Mutual Exclusion
○ Do not allow process to use resources exclusively, force them to always share

● Deny No-Preemption (Allow Preemption)
○ Allow resources to be preempted/”stolen” from their current holder

● Deny Hold-and-Wait (Allow Hold-only or Allow Wait-Only)
○ Enforce all-or-nothing policy, a process that requires multiple resources must acquire

them all at the same time

● Deny Circular Wait
○ Enforce resource-ordering policy. Assign resources into different “rings/levels”. Resource

must be requested in increasing order of these rings/levels

142

Resource Ordering Policy

1. Class 0: USB Stick and RAM
2. Class 1: Printer
3. Class 2: GPU

Policy: processes must request the resources in increasing class number

Example: Process X needs both USB stick and GPU

1. Allow: request(USB), request(GPU)
2. Deny: request(GPU), request(USB)

143

Resource Ordering Policy

1. Class 0: USB Stick and RAM
2. Class 1: Printer
3. Class 2: GPU

Policy: Resources in same class number must be requested together

Example: Process Y needs both USB stick and RAM

1. Deny: request(USR), request(RAM)
2. Deny: request(RAM), request(USB)
3. Allow: request(USB, RAM)

144

Dining Philosophers Deadlock Prevention

● Allow at most N-1 philosophers to dine simultaneously
● Apply asymmetric chopstick pick up order

○ Left-Handed philosophers: pick left chopstick first
○ Right-Handed Philosophers: pick right chopstick first

● Other strategies?

145

Dining Philosophers: Limit N-1 diners
/* (prone to deadlock) */

while (true) {

 chop[k].wait(); // left chopstick
 chop[k+1].wait(); // right chopstick

 /* DINE */

 chop[k].signal();
 chop[k+1].signal();

 /* think */
}

/* Philosopher-k (deadlock free) */

while (true) {
 diner.wait();
 chop[k].wait(); // left chopstick
 chop[k+1].wait(); // right chopstick

 /* DINE */

 chop[k].signal();
 chop[k+1].signal();
 diner.signal();
 /* think */
}

Semaphore chop[5] = {1, 1, 1, 1, 1};
Semaphore diner = 4;

146

Cigarette Smokers Problem

● Four concurrent threads: one agent and three smokers
● Each smoker needs three ingredients: paper, tobacco, and a match
● The agent has infinite amount of ALL the ingredients
● Each smoker has infinite amount of ONLY ONE ingredient
● The agent randomly select two ingredients and make them available to

the smokers

147

Cigarette Smokers (unsynchronized code)

Table

Sp

St

Sm

// agent
while (1) {

 /* two distinct items */
 (t1,t2) = rnd_two_items();

 place_supplies (t1, t2);

}

// smoker-X (needs Y and Z)
while (1) {

 y = get_supply();

 z = get_supply();

 smoke();

}

Sp: smoker with paper (needs tobacco and match)
St: smoker with tobacco (needs paper and match)
Sm: smoker with match (need paper and tobacco)

the table can hold ONLY TWO items max

148

Ag

P requests two instances of R

Resource Allocation Graph

R

P

3 instances of resource R process P

R

P

One instance of R is assigned to P

P
R

REQUEST EDGE ASSIGNMENT/ALLOCATION EDGE

● Nodes: processes or resources
● Edges: request edges / assignment edges

149

Resource Allocation Graph

P1
R1

P2
P1 (blocked): is holding one instance of
R2, and is waiting for one instance of R1
(can be granted immediately)

P2 (blocked): is holding one instance of
R1 and is waiting for one instance of R2

P3 (blocked): is waiting for one instance
of R2

P2 and P3 compete for R2

R2
P3

Can’t conclude: Cycle ⇒ Deadlock
Can’t conclude CW ⇒ DL

150

Resource Allocation Graph

P1
R1

P2
P1 (ready/running): is holding one
instance of R2, and one instance of R1

P2 (ready/running): is holding one
instance of R1 and is waiting for one
instance of R2

P3 (blocked): is waiting for one
instance of R2 (can’t be immediately
granted)R2

P3

Can conclude: No CW ⇒ No DL

151

R3

Resource Allocation Graph

P1

R1

P2

R2

P3

P1 (blocked)
P2 (blocked)
P3 (ready/running)

152

R4

R3

Resource Allocation Graph

P1

R1

P2

R2

P3

P1 (blocked)
P2 (blocked)
P3 (blocked)

153

R4

