
Software Solution: Semaphores
(“lock & counter”)

69

Semaphore in User Space

70

Semaphores: Edsger Dijkstra (1965)
void wait(int s) {
 while (s <= 0) { /* None */ }
 s--;
}

void signal(int s) {
 s++;
}

two ATOMIC operations on INTEGER sAlso invented
Dijkstra Graph Shortest Path Algorithm

71

Using Dijkstra Semaphore

72

while (s <= 0) { /* do nothing */ }
s--;

s++;

Critical Section

// initial value
int s = 1;

down(s); // or wait(s)

Critical Section

up(s); // or signal(s)

Types of Semaphore

● Binary Semaphores
○ Use: mutex locks, wait(L) to obtain the lock, signal(L) to release the lock

● Counting Semaphores: value can be any number (including NEGATIVE)
○ Common use: control access to resources with finite number of availability
○ Initialized to number of available resources
○ wait(R): request ONE unit of resource, signal(R): release the resource

● “Event Notification” Semaphores
○ Initialized to ZERO
○ wait(E): block until event took place, signal(E): notify that event has taken place

73

Binary Semaphore Details

74

while (s <= 0) {/* none */}
s--;

s++;

/* Critical Section */

s = ___ (initial value 1)

Counting Semaphore Details

75

while (s <= 0) {/* none */}
s--;

s++;

/* Shared Space */

s = ____ (initial value 3)

Counting Semaphore Details

76

while (s <= 0) {/* none */}
s--;

/* Workspace */

s = ____ (initial value 3)

Typical Use of Semaphores

● # of sem.wait() calls must == # of sem.signal() calls
● Protect Shared Resources (control the “room capacity”)

○ Invoke sr.wait() and sr.signal() pair within one process (the wait-signal pair creates
a virtual room of capacity N)

○ Initialize the semaphore sr to the “room” capacity

● Event Counters (notify “events”)
○ ev.wait() and ev.signal() calls are split across two processes, the pair create a

notification channel between the two processes
○ Typically initialize the semaphore ev to zero (to indicate no events have taken place), or

positive number (to indicate some events have happened)

77

/* Action 2 */

while (s <= 0) {/* none */}
s--;

Event Notification Semaphore Details

78

s++;

/* Action 1 */

s = ___ (initial value 0)

Counting/Binary Semaphore

79

wait(bigroom_sem)

signal(bigroom_sem)

Room of capacity 5

// counting
bigroom_sem = 5

initialization

// binary
smallroom_sem = 1

initialization

wait(smallroom_sem)

signal(smallroom_sem)

Room of capacity 1

Ferris Wheel: “Critical Section” of Capacity N

81

ferris.wait() ferris.signal()

Semaphore ferris = N;

The Rapids Bus: “Critical Section” of Capacity N

82

bus.wait()
// hop on

// hop off
bus.signal()

sit or sleep inside
bus

number of wait() = number of signal()

83

Semaphore Implementation

84

Classical (With Busy Wait)

Without OS assistance

Modern (Minimum Busy Wait)

With OS assistance

the counter becomes a lock
when its value is zero or negative

the counter becomes a lock
when its value is negative

Implementation: classical vs. modern
wait(s) {
 spin_lock;
 while (s <= 0)
 ; // BUSY WAIT

 S--;
 spin_unlock;
}

signal(s) {
 spin_lock;
 s++;
 spin_unlock;
}

class Semaphore { // “MODERN” semaphore,
private: // spin_lock is used, but not explicitly shown
 int value;
 queue<Process> list; // queue of processes blocked on this semaphore
public:
 void wait() { // ATTN: no while loop!!!
 value--;
 if (value < 0) {
 list.push_back(_this_process_);
 change the state of _this_process_ to “blocked”
 }
 }

 void signal() {
 value++;
 if (value <= 0) {
 Process p = list.pop_front();
 change the state of p to “ready”
 }
 }
}

Using classical definitions,
semaphore values are
never negative

Using “modern” definition,
semaphore value may be
negative and its magnitude
is the number of processes
blocked on the semaphore

85

value = 1 (init 1)

Semaphore x;

x.wait();

// Shared Section

x.signal();

Implementation: classical vs. modern
class Semaphore { // “MODERN” semaphore,
 // spin_lock is used, but not explicitly shown
private:
 int value;
 queue<Process> blocked; // queue of processes blocked on this semaphore
public:
 void wait() { // ATTN: no while loop!!!
 value--;
 if (value < 0) {
 blocked.push_back(_this_process_);
 change the state of _this_process_ to “blocked”
 }
 }

 void signal() {
 value++;
 if (value <= 0) {
 Process p = blocked.pop_front();
 change the state of p to “ready”
 }
 }
}

Using “modern” definition,
semaphore value may be
negative and its magnitude
is the number of processes
blocked on the semaphore

86

value = ____ (init __)

“Modern” Semaphore Implementation

● value and list are shared variables themselves
● Operations inside Semaphore::wait() and Semaphore::signal() must

be ATOMIC
○ Increment / decrement s
○ Add / remove processes/threads from the queue

● Use spinlock to guarantee atomic operation throughout both functions
○ We can’t avoid busy wait altogether!
○ Classical semaphores require much longer busy wait
○ Modern semaphores run the spinlock only for a fraction of time

87

Integer Value of Modern Semaphores

Semaphore sem;

● sem.value ≥ 0: the number of processes that can run sem.wait() without
getting blocked

● sem.value < 0: abs(sem.value) is the number of processes blocked on the
semaphore

88

“Notification” Semaphores: Chef to Server

89

wait(taco_done)

signal(taco_done)

taco_done = 0

initialization

“Notification” Semaphores: Server to Chef

90

empty_tray = 5;

initializationwait(empty_tray)

signal(empty_tray)

empty_tray is 2

Current value

“Notification” Semaphores

91

wait(taco_done)

signal(taco_done)

taco_done = 0
empty_tray = 5;

initializationwait(empty_tray)

signal(empty_tray)

taco_done is 3
empty_tray is 2

Current value

Python Playground

Taco Restaurant using Semaphores
/* Chef */
while (true) {

 t = make_taco();

 empty_tray.wait();
 put_taco_on_tray(t)
 mutex.wait();
 put_tray_on_kitchen_counter()
 mutex.signal();

 taco_done.signal();

}

/* Server */
while (true) {

 taco_done.wait();
 mutex.wait();
 get_tray_from_kitchen_counter()
 mutex.signal();
 serve_taco_to_customer();
 put_empty_tray_on_kit_counter();
 empty_tray.signal();

}

Semaphore values: empty_tray = __ (init 5)
taco_done = __ (init 0)

mutex = __ (init 1)
92

Producer/Consumer Solution using Semaphores
/* producer (append @ aend) */
while (true) {

 p_item = produce_item();

 empty_bin.wait();
 mutex.wait();
 buff[in] = p_item;
 in++;
 in %= BUFF_SIZE;
 mutex.signal();
 filled_bin.signal();

}

/* consumer (remove from front) */
while (true) {

 filled_bin.wait();
 mutex.wait();
 c_item = buff[out];
 out++;
 out %= BUFF_SIZE;
 mutex.signal();
 empty_bin.signal();

 consume_item (c_item);
}

Semaphore values: empty_bin = __ (init 3)
filled_bin = __ (init 0)

mutex = __ (init 1)
93

Producer/Consumer using Semaphores

● Shared buffer with N bins
● Two “event counters”

○ an item is placed in a bin (bin_filled similar to “taco_done”)
○ an item is removed from a bin (bin_emptied similar to “empty_tray”)

● One mutex lock (binary semaphore)
○ shared buffer manipulated concurrently by both producer and consumer

94

Producer: counters & busy wait ⇔ semaphores
/* producer (append @ the end */
while (true) {

 p_item = produce_item();

 while (counter == BUFF_SIZE)
 /* do nothing */;
 buff[in] = p_item;
 in++;
 in %= BUFF_SIZE;

 counter++; /* unblock consumer */

}

/* producer (append @ the end) */
while (true) {

 p_item = produce_item();

 empty_bin.wait();

 buff[in] = p_item;
 in++;
 in %= BUFF_SIZE;

 filled_bin.signal();

}

95

Consumer: counters & busy wait ⇔ semaphores
/* consumer (remove from front) */
while (true) {

 filled_bin.wait();

 c_item = buff[out];
 out++;
 out %= BUFF_SIZE;

 empty_bin.signal();

 consume_item (c_item);

}

/* consumer (remove from front) */
while (true) {

 while (counter == 0)
 /* do nothing */;
 c_item = buff[out];
 out++;
 out %= BUFF_SIZE;

 counter--; /* unblock producer */

 consume_item (c_item);

}

96

Semaphore wait() vs Process wait()

99

● Semaphore wait() becomes blocking
only when the value of the semaphore is

○ Non-positive (classic semaphores)
○ Negative (modern semaphores)

● Process wait() becomes blocking when
its child process has not terminated

● Process wait() does not block when the
child it is waiting for has terminated

Semaphores for Classic CS Problems

100

Readers / Writers

Shared Database

W

W

W

W

W

R

R

R

R

R

R

RHow many readers are allowed to access concurrently?

How many writers are allowed to access concurrently?
102

Readers / Writers

Shared Database

W

W

W

W

W

R

R

R

R

R

R

R

103

Readers / Writers

Shared Database

W

W

W

W

W

R

R

R

R

R

R

R

104

Readers/Writers

● More challenging than Producer/Consumer problem
○ ONE producer and ONE consumer
○ MANY readers and MANY writers

● Asymmetrical access
○ Only one writer is allowed at any time (destructive operation)
○ Multiple readers are allowed at any time (non-destructive operation)

● Reading and writing are mutually exclusive operations
○ When the DB is being written, no readers shall be allowed access
○ When the DB is being read (by multipler readers), no writers shall be allowed access

105

Semaphores for Reader/Writers

● An “active” writer must exclude other writers and other readers
○ Simpler synchronization code for writers

● An “active” reader should exclude any writers but allow other readers to
join reading the DB

○ More complicated logic in readers’ code

● Solution Strategy
○ Assign one reader to be the “group leader”
○ Let the “group leader” prevent other writers from using the DB but allow other readers

106

Readers/Writers Handout

107

Readers/Writers (First attempt)
/* writer */
while (true) {

 rw_access.wait();

 // update the DB
 // Update the DB
 // Update the DB

 rw_access.signal();

}

/* reader */
while (true) {

 rw_access.wait();

 // read the DB
 // read the DB
 // read the DB

 rw_access.signal();

}

108

rw_access: __ (init 1)

#1: Readers/Writers (incomplete)
/* writer */
while (true) {

 rw_access.wait();

 // update the DB
 // Update the DB
 // Update the DB

 rw_access.signal();

}

/* reader */
while (true) {

 reader_counter++;
 if (reader_counter == 1)
 rw_access.wait(); // only the leader holds the access key

 // read the DB
 // read the DB
 // read the DB

 reader_counter--;
 if (reader_counter == 0)
 rw_access.signal(); // the leader releases the access key

}

109

rw_access: __ (init 1)
reader_count: __ (init 0)

#2: Readers/Writers: First R locks (last R unlock)
/* writer */
while (true) {

 rw_access.wait();

 // update the DB
 // Update the DB
 // Update the DB

 rw_access.signal();

}

/* reader */
while (true) {
 rmutex.wait();
 reader_counter++;
 rmutex.signal();

 if (reader_counter == 1)
 rw_access.wait(); // only the leader holds the access key
 // read the DB
 // read the DB
 rmutex.wait();
 reader_counter--;
 rmutex.signal();
 if (reader_counter == 0)
 rw_access.signal(); // the leader releases the access key
}

Semaphore rw_access: __ (init 1)
Semaphore mutex: __ (init 1)
int reader_counter: __ (init 0)

110

#3: Readers/Writers: Fair Competition
/* writer */
while (true) {

 writer_counter++;
 if (writer_counter == 1)
 rw_permit.wait();
 rw_access.wait();

 // update the DB
 // Update the DB

 rw_access.signal();
 writer_counter--;
 if (writer_counter == 0)
 rw_permit.signal();
}

/* reader */
while (true) {

 rw_permit.wait();
 reader_counter++;
 if (reader_counter == 1)
 rw_access.wait();
 rw_permit.signal();
 // read the DB
 // read the DB
 // read the DB

 reader_counter--;
 if (reader_counter == 0)
 rw_access.signal();

}

111

Semaphore rw_access = __ (init 1)
Semaphore rw_permit = __ (init 1)
int reader_count = __ (init 0)
int writer_couint = __ (init 0)

