
Software Solution: Semaphores
(“lock & counter”)
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Semaphore in User Space
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Semaphores: Edsger Dijkstra (1965)
void wait(int s) {
  while (s <= 0) { /* None */ }
  s--; 
}

void signal(int s) {
  s++; 
}

two ATOMIC operations on INTEGER sAlso invented 
Dijkstra Graph Shortest Path Algorithm
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Using Dijkstra Semaphore
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while (s <= 0) { /* do nothing */ }
s--;

s++;

Critical Section

// initial value
int s = 1;

down(s);  // or wait(s)

Critical Section

up(s);    // or signal(s)



Types of Semaphore

● Binary Semaphores
○ Use: mutex locks,  wait(L) to obtain the lock, signal(L) to release the lock

● Counting Semaphores: value can be any number (including NEGATIVE)
○ Common use: control access to resources with finite number of availability
○ Initialized to number of available resources
○ wait(R): request ONE unit of resource, signal(R): release the resource

● “Event Notification” Semaphores
○ Initialized to ZERO
○ wait(E): block until event took place, signal(E): notify that event has taken place

73

Binary Semaphore Details
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while (s <= 0) {/* none */}
s--;

s++;

/* Critical Section */

s = ___  (initial value 1)



Counting Semaphore Details
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while (s <= 0) {/* none */}
s--;

s++;

/* Shared Space  */

s = ____  (initial value 3)

Counting Semaphore Details
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while (s <= 0) {/* none */}
s--;

/* Workspace  */

s = ____ (initial value 3)



Typical Use of Semaphores

● # of sem.wait() calls must == # of sem.signal() calls
● Protect Shared Resources (control the “room capacity”)

○ Invoke sr.wait() and sr.signal() pair within one process (the wait-signal pair creates 
a virtual room of capacity N)

○ Initialize the semaphore sr to the “room” capacity

● Event Counters (notify “events”)
○ ev.wait() and ev.signal() calls are split across two processes, the pair create a 

notification channel between the two processes
○ Typically initialize the semaphore ev to zero (to indicate no events have taken place), or 

positive number (to indicate some events have happened)
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/* Action 2 */

while (s <= 0) {/* none */}
s--;

Event Notification Semaphore Details
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s++;

/* Action 1 */

s = ___  (initial value 0)



Counting/Binary Semaphore
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wait(bigroom_sem)

signal(bigroom_sem)

Room of capacity 5

// counting
bigroom_sem = 5

initialization

// binary
smallroom_sem = 1

initialization

wait(smallroom_sem)

signal(smallroom_sem)

Room of capacity 1

Ferris Wheel: “Critical Section” of Capacity N
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ferris.wait() ferris.signal()

Semaphore ferris = N;



The Rapids Bus: “Critical Section” of Capacity N
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bus.wait()
// hop on

// hop off
bus.signal()

sit or sleep inside 
bus

number of wait() = number of signal()
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Semaphore Implementation
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Classical (With Busy Wait)

Without OS assistance

Modern (Minimum Busy Wait)

With OS assistance

the counter becomes a lock
when its value is zero or negative

the counter becomes a lock
when its value is negative

Implementation: classical vs. modern
wait(s) {
   spin_lock;
   while (s <= 0)
     ; // BUSY WAIT

   S--;
   spin_unlock;
}

signal(s) {
   spin_lock;
   s++; 
   spin_unlock;
}

class Semaphore { // “MODERN” semaphore, 
private:          // spin_lock is used, but not explicitly shown
  int value;
  queue<Process> list; // queue of processes blocked on this semaphore
public:
  void wait() {   // ATTN: no while loop!!!
    value--;
    if (value < 0) {
      list.push_back(_this_process_);
      change the state of _this_process_ to “blocked”  
    }
  }

  void signal() {
    value++;
    if (value <= 0) {
      Process p = list.pop_front();
      change the state of p to “ready”
    }
  }
}

Using classical definitions, 
semaphore values are 
never negative

Using “modern” definition, 
semaphore value may be 
negative and its magnitude 
is the number of processes 
blocked on the semaphore
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value = 1 (init 1)



Semaphore x;

x.wait();

// Shared Section

x.signal();

Implementation: classical vs. modern
class Semaphore { // “MODERN” semaphore, 
                  // spin_lock is used, but not explicitly shown
private:
  int value;
  queue<Process> blocked; // queue of processes blocked on this semaphore
public:
  void wait() {   // ATTN: no while loop!!!
    value--;
    if (value < 0) {
      blocked.push_back(_this_process_);
      change the state of _this_process_ to “blocked”  
    }
  }

  void signal() {
    value++;
    if (value <= 0) {
      Process p = blocked.pop_front();
      change the state of p to “ready”
    }
  }
}

Using “modern” definition, 
semaphore value may be 
negative and its magnitude 
is the number of processes 
blocked on the semaphore
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value = ____   (init __)

“Modern” Semaphore Implementation

● value and list are shared variables themselves
● Operations inside Semaphore::wait() and Semaphore::signal() must 

be ATOMIC
○ Increment / decrement s
○ Add / remove processes/threads from the queue

● Use spinlock to guarantee atomic operation throughout both functions
○ We can’t avoid busy wait altogether!
○ Classical semaphores require much longer busy wait
○ Modern semaphores run the spinlock only for a fraction of time
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Integer Value of Modern Semaphores

Semaphore sem;

● sem.value ≥ 0: the number of processes that can run sem.wait() without 
getting blocked

● sem.value < 0: abs(sem.value) is the number of processes blocked on the 
semaphore
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“Notification” Semaphores: Chef to Server
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wait(taco_done)

signal(taco_done)

taco_done = 0

initialization



“Notification” Semaphores: Server to Chef

90

empty_tray = 5;

initializationwait(empty_tray)

signal(empty_tray)

empty_tray is 2

Current value

“Notification” Semaphores
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wait(taco_done)

signal(taco_done)

taco_done = 0
empty_tray =  5;

initializationwait(empty_tray)

signal(empty_tray)

taco_done is 3
empty_tray is 2

Current value

Python Playground



Taco Restaurant using Semaphores
/* Chef */
while (true) {

  t = make_taco();

  empty_tray.wait();
  put_taco_on_tray(t)
  mutex.wait();
  put_tray_on_kitchen_counter()  
  mutex.signal();

  taco_done.signal();

}

/* Server */
while (true) {

  taco_done.wait();
  mutex.wait();
  get_tray_from_kitchen_counter()
  mutex.signal();
  serve_taco_to_customer();
  put_empty_tray_on_kit_counter();
  empty_tray.signal();

}

Semaphore values:  empty_tray = __ (init 5)   
taco_done = __ (init 0)

mutex = __ (init 1)
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Producer/Consumer Solution using Semaphores
/* producer (append @ aend) */
while (true) {

  p_item = produce_item();

  empty_bin.wait();
  mutex.wait();
    buff[in] = p_item;
    in++;
    in %= BUFF_SIZE;
  mutex.signal();
  filled_bin.signal();

}

/* consumer (remove from front) */
while (true) {

  filled_bin.wait();
  mutex.wait();
    c_item = buff[out];
    out++;
    out %= BUFF_SIZE;
  mutex.signal();
  empty_bin.signal();

  consume_item (c_item);
}

Semaphore values:  empty_bin = __ (init 3)   
filled_bin = __ (init 0)

mutex = __ (init 1)
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Producer/Consumer using Semaphores

● Shared buffer with N bins
● Two “event counters”

○ an item is placed in a bin (bin_filled similar to “taco_done”)
○ an item is removed from a bin (bin_emptied similar to “empty_tray”)

● One mutex lock (binary semaphore)
○ shared buffer manipulated concurrently by both producer and consumer
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Producer: counters & busy wait ⇔ semaphores
/* producer (append @ the end */
while (true) {

  p_item = produce_item();

  while (counter == BUFF_SIZE)
    /* do nothing */;
  buff[in] = p_item;
  in++;
  in %= BUFF_SIZE;

  counter++; /* unblock consumer */

}

/* producer (append @ the end) */
while (true) {

  p_item = produce_item();

  empty_bin.wait();

  buff[in] = p_item;
  in++;
  in %= BUFF_SIZE;

  filled_bin.signal();

}
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Consumer: counters & busy wait ⇔ semaphores
/* consumer (remove from front) */
while (true) {

  filled_bin.wait();

  c_item = buff[out];
  out++;
  out %= BUFF_SIZE;

  empty_bin.signal();

  consume_item (c_item);

}

/* consumer (remove from front) */
while (true) {

  while (counter == 0)
    /* do nothing */;
  c_item = buff[out];
  out++;
  out %= BUFF_SIZE;

  counter--; /* unblock producer */

  consume_item (c_item);

}
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Semaphore wait() vs Process wait()

99

● Semaphore wait() becomes blocking 
only when the value of the semaphore is

○ Non-positive (classic semaphores)
○ Negative (modern semaphores)

● Process wait() becomes blocking when 
its child process has not terminated

● Process wait() does not block when the 
child it is waiting for has terminated



Semaphores for Classic CS Problems
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Readers / Writers

Shared Database

W

W

W

W

W

R

R

R

R

R

R

RHow many readers are allowed to access concurrently?

How many writers are allowed to access concurrently?
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Readers / Writers

Shared Database

W

W

W

W

W

R

R

R

R

R

R

R
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Readers / Writers

Shared Database

W

W

W

W

W

R

R

R

R

R

R

R
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Readers/Writers

● More challenging than Producer/Consumer problem
○ ONE producer and ONE consumer
○ MANY readers and MANY writers

● Asymmetrical access
○ Only one writer is allowed at any time (destructive operation)
○ Multiple readers are allowed at any time (non-destructive operation)

● Reading and writing are mutually exclusive operations
○ When the DB is being written, no readers shall be allowed access
○ When the DB is being read (by multipler readers), no writers shall be allowed access
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Semaphores for Reader/Writers

● An “active” writer must exclude other writers and other readers
○ Simpler synchronization code for writers

● An “active” reader should exclude any writers but allow other readers to 
join reading the DB

○ More complicated logic in readers’ code

● Solution Strategy
○ Assign one reader to be the “group leader”
○ Let the “group leader” prevent other writers from using the DB but allow other readers
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Readers/Writers Handout
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Readers/Writers (First attempt)
/* writer */
while (true) {

  rw_access.wait();

  // update the DB
  // Update the DB
  // Update the DB

  rw_access.signal();

}

/* reader */
while (true) {

  rw_access.wait();

  // read the DB
  // read the DB
  // read the DB

  rw_access.signal();

}
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rw_access:       __  (init 1)



#1: Readers/Writers (incomplete)
/* writer */
while (true) {

  rw_access.wait();

  // update the DB
  // Update the DB
  // Update the DB

  rw_access.signal();

}

/* reader */
while (true) {

  reader_counter++;
  if (reader_counter == 1)
    rw_access.wait(); // only the leader holds the access key

  // read the DB
  // read the DB
  // read the DB

  reader_counter--;
  if (reader_counter == 0)
    rw_access.signal(); // the leader releases the access key

}
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rw_access:       __  (init 1)
reader_count: __ (init 0)

#2: Readers/Writers: First R locks (last R unlock)
/* writer */
while (true) {

  rw_access.wait();

  // update the DB
  // Update the DB
  // Update the DB

  rw_access.signal();

}

/* reader */
while (true) {
  rmutex.wait();
  reader_counter++;
  rmutex.signal();

  if (reader_counter == 1)
    rw_access.wait(); // only the leader holds the access key
  // read the DB
  // read the DB
  rmutex.wait();
  reader_counter--;
  rmutex.signal();
  if (reader_counter == 0)
    rw_access.signal(); // the leader releases the access key
}

Semaphore rw_access: __ (init 1)
Semaphore mutex:   __ (init 1)
int reader_counter:  __ (init 0)
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#3: Readers/Writers: Fair Competition
/* writer */
while (true) {

  writer_counter++;
  if (writer_counter == 1)
    rw_permit.wait();
  rw_access.wait();

  // update the DB
  // Update the DB

  rw_access.signal();
  writer_counter--;
  if (writer_counter == 0)
    rw_permit.signal();
}

/* reader */
while (true) {

  rw_permit.wait();
  reader_counter++;
  if (reader_counter == 1)
    rw_access.wait();
  rw_permit.signal();
  // read the DB
  // read the DB
  // read the DB

  reader_counter--;
  if (reader_counter == 0)
    rw_access.signal();

}
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Semaphore rw_access = __  (init 1)
Semaphore rw_permit = __ (init 1)
int reader_count = __ (init 0)
int writer_couint = __ (init 0)


