Software Solution: Semaphores
(“lock & counter”)

Semaphore in User Space

69

70



Semaphores: Edsger DIJ|(SUE| (1965)

void wait(int s) {
while (s <= @) { /* None */ }
s--3

}

void signal(int s) {
S++;

}

Also invented two ATOMIC operations on INTEGER s

Dijkstra Graph Shortest Path Algorithm

Using Dijkstra Semaphore

// initial value
int s = 1;

while (s <= 0) { /* do nothing */ }
s--;

down(s); // or wait(s)

Critical Section

up(s); // or signal(s)

Critical Section




Types of Semaphore

e Binary Semaphores
o Use: mutex locks, wait(L) to obtain the lock, signal(L) to release the lock
e Counting Semaphores: value can be any number (including NEGATIVE)
o Common use: control access to resources with finite number of availability
o Initialized to number of available resources
o wait(R): request ONE unit of resource, signal(R): release the resource
e “Event Notification” Semaphores
o Initialized to ZERO
o wait(E): block until event took place, signal(E): notify that event has taken place

73

Binary Semaphore Details

while (s <= @) {/* none %/} s=__ (initial value 1)
$-;

/* Critical Section */

S++; 0 °

74



Counting Semaphore Details

while (s <= @) {/* none */} s=___ (initial value 3)

/* Shared Space */

75

Counting Semaphore Details

while (s <= 0) {/* none */} s=___ (initial value 3)

/* Workspace */

76



Typical Use of Semaphores

e #of sem.wait() calls must ==# of sem.signal() calls
e Protect Shared Resources (control the “room capacity”)

o

o

e Event Counters (notify “events”)

o

Invoke sr.wait() and sr.signal() pair within one process (the wait-signal pair creates

a virtual room of capacity N)
Initialize the semaphore sr to the “room” capacity

ev.wait() and ev.signal() calls are split across two processes, the pair create a

notification channel between the two processes
Typically initialize the semaphore ev to zero (to indicate no events have taken place), or

positive number (to indicate some events have happened)

Event Natification Semaphore Details

s++:

s=___ (initial value 0)

while (s <= @) {/* none */}
s--;

77

78



Counting/Binary Semaphore

initialization initialization
// counting // binary
bigroom_sem = 5 smallroom_sem = 1
wait(bigroom_sem) wait(smallroom_sem)
Room of capacity 5 Room of capacity 1
signal(bigroom_sem) signal(smallroom_sem)

79

Ferris Wheel: “Critical Section” of Capacity N

Semaphore ferris = N;

A XXX AKX A XX XK
ferris.wait() ferris.signal()

81



The Rapids Bus: “Critical Section” of Capacity N

bus.wait()
// hop on

sit or sleep inside
bus

// hop off
bus.signal()

number of wait() = number of signal()

82

83



Semaphore Implementation

Classical (With Busy Wait) Modern (Minimum Busy Wait)
Without OS assistance With OS assistance
the counter becomes a lock the counter becomes a lock
when its value is zero or negative when its value is negative

84

Implementation: classical vs. modern

®e ® o
wait(s) { class Semaphore { // “MODERN” semaphore,
spin_lock; private: // spin_Llock 1is used, but not explicitly shown
— 3 3 .
while (s <= @) e - value = 1 (init 1)
queue<Process> list; // queue of processt e
5 // BUSY WAIT public:
void wait() { // ATTN: no while loop!!!
S--: value--;
3 .
spin_unlock; if (value < 0) {
- list.push_back(_this_process_);
change the state of _this_process_ to “blocked”
. }
signal(s) { }
spin_lock;
S++; void signal() {
spin_unlock; value++; . .
if (value <= 0) { Using “modern” definition,
Process p = list.pop_front(); | semaphore value may be
Using classical definitions, change the state of p to “ready negative and its magnitude
semaphore values are } ¥ is the number of processes
never negative } blocked on the semaphore
85




Implementation: classical vs. modern

Semaphore x;

x.wait();

// Shared Section

x.signal();

class Semaphore { // “MODERN” semaphore,
// spin_Llock is used,
private:
int value;

queue<Process> blocked; // queue of processes blocked on this semaphore

public:

value =

but not explicitly shown

. (init _)

void wait() { // ATTN: no while loop!!!

value--;
if (value < @) {
blocked.push_back(_this_process_);

change the state of _this_process_ to “blocked”

}
}

void signal() {
value++;
if (value <= 9) {
Process p = blocked.pop front();
change the state of p to “ready”
}
}
}

Using “modern” definition,
semaphore value may be
negative and its magnitude
is the number of processes
blocked on the semaphore

“Modern” Semaphore Implementation

e value and list are shared variables themselves
e COperations inside Semaphore: :wait() and Semaphore: :signal() must

be ATOMIC

o Increment/decrements
o Add/remove processes/threads from the queue

e Use spinlock to guarantee atomic operation throughout both functions
o We can’t avoid busy wait altogether!
o Classical semaphores require much longer busy wait
o Modern semaphores run the spinlock only for a fraction of time

86

87



Integer Value of Modern Semaphores

Semaphore sem;

e sem.value = 0: the number of processes that can run sem.wait () without
getting blocked

e sem.value <0: abs(sem.value) is the number of processes blocked on the
semaphore

88

“Natification” Semaphores: Chef to Server

initialization

’taco_done==0 ‘ wait(taco_done)

signal(taco_done)

01l Wine

89



“Natification” Semaphores: Server to Chef

wait(empty_tray) initialization

empty_tray = 5; ‘

Current value

empty_tray is 2 ‘

signal(empty_tray)

OO

90

“Natification” Semaphores

initialization
taco_done =0
empty_tray = 5;

wait(empty_tray)

‘ wait(taco_done)

Current value

taco_doneis 3
empty_tray is 2

signal(taco_done) signal(empty_tray)

TS AT A S

Python Playground

91



Taco Restaurant using Semaphores

/* Chef */
while (true) {

t =
empty_tray.wait();
mutex.wait();
mutex.signal();

taco_done.signal();

/* Server */
while (true) {

taco_done.wait();
mutex.wait();

mutex.signal();

}
Semaphore values: empty tray = __ (init 5)
taco_done = __ (init @)
mutex = __ (init 1) "

Producer/Consumer Solution using Semaphores

/* producer (append @ aend) */
while (true) {

p_item = produce item();

empty_bin.wait(); @
mutex.wait();
buff[in] = p_item;
in++;
in %= BUFF_SIZE;
mutex.signal();
filled_bin.signal();

/* consumer (remove from front) */
while (true) {

filled_bin.wait();
mutex.wait();

c_item = buff[out];

out++;

out %= BUFF_SIZE;
mutex.signal();

}
Semaphore values: empty bin = __ (init 3)
filled bin = __ (init 9)
mutex = __ (init 1) .




Producer/Consumer using Semaphores

e Shared buffer with N bins

e [wo "“event counters”

o anitemis placed in a bin (bin_filled similar to “taco_done")
o anitem is removed from a bin (bin_emptied similar to “empty_tray"”)

e One mutex lock (binary semaphore)
o shared buffer manipulated concurrently by both producer and consumer

94

Producer: counters & busy wait < semaphores

/* producer (append @ the end */ /* producer (append @ the end) */
while (true) { while (true) {

p_item = produce_item(); p_item = produce_item();

while (counter == BUFF_SIZE) empty_bin.wait();

/* do nothing */;

buff[in] = p_item; buff[in] = p_item;

inees -_— ..

in %= BUFF_SIZE; in %= BUFF_SIZE;

counter++; /* unblockR consumer */ filled_bin.signal();

95



Consumer: counters & busy wait <> semaphores

/* consumer (remove from front) */
while (true) {

while (counter == 0)
/* do nothing */;

c_item = buff[out];

out++;

out %= BUFF_SIZE;

counter--; /* unblock producer */

/* consumer (remove from front) */
while (true) {

filled_bin.wait();

c_item = buff[out];
out++;
out %= BUFF_SIZE;

Semaphore wait() vs Process wait()

Semaphore wait() becomes blocking

only when the value of the semaphore is
o Non-positive (classic semaphores)
o  Negative (modern semaphores)

96

Process wait() becomes blocking when
its child process has not terminated
Process wait() does not block when the
child it is waiting for has terminated

99



Semaphores for Classic (S Problems

Readers / Writers

@ Shared Database e

How many readers are allowed to access concurrently?

How many writers are allowed to access concurrently?

100

102



Readers / Writers

103

104



Readers/Writers

e More challenging than Producer/Consumer problem

o ONE producer and ONE consumer
o  MANY readers and MANY writers

e Asymmetrical access
o Only one writer is allowed at any time (destructive operation)
o Multiple readers are allowed at any time (non-destructive operation)

e Reading and writing are mutually exclusive operations
o When the DB is being written, no readers shall be allowed access
o When the DB is being read (by multipler readers), no writers shall be allowed access

Semaphores for Reader/Writers

e An "active” writer must exclude other writers and other readers
o  Simpler synchronization code for writers

e An “active” reader should exclude any writers but allow other readers to
join reading the DB
o More complicated logic in readers’ code

e Solution Strategy
o Assign one reader to be the “group leader”
o Letthe “group leader” prevent other writers from using the DB but allow other readers

105

106



Readers/Writers Handout

Readers /Writers (First attempt)

/* writer */
while (true) {

rw_access.wait();
// update the DB
// Update the DB
// Update the DB

rw_access.signal();

107

/* reader */ Fw_access:

(init 1)

while (true) {
rw_access.wait();
// read the DB
// read the DB
// read the DB

rw_access.signal();

108



#1: Readers/Writers (incomplete.

/* writer */
while (true) {

rw_access.wait();

// update the DB
// Update the DB
// Update the DB

rw_access.signal();

#¢: Readers/Writers: First R

/* writer */
while (true) {

rw_access.wait();

// update the DB
// Update the DB
// Update the DB

rw_access.signal();

/* reader */ rw_access: _ (init 1)
while (true) { reader_count: __ (init 0)

reader_counter++;
if (reader_counter == 1)
rw_access.wait(); // only the leader holds the access key

// read the DB
// read the DB
// read the DB

reader_counter--;
if (reader_counter == 0)
rw_access.signal(); // the leader releases the access key

ocks (last R unlock)

Semaphore rw_access: (init 1)
/* reader */ Semaphore mutex: . (init 1)
while (true) { int reader_counter: _ (init 0)

rmutex.wait();
reader_counter++;
rmutex.signal();

if (reader_counter == 1)
rw_access.wait(); // only the leader holds the access key
// read the DB
// read the DB
rmutex.wait();
reader_counter--;
rmutex.signal();
if (reader_counter == 0)
rw_access.signal(); // the leader releases the access key

109

110



#3: Readers/Writers:

/* writer */
while (true) {

Fair Competition

/* reader */
while (true) {

writer_counter++;

if (writer_counter == 1)
rw_permit.wait();

rw_access.wait();

// update the DB
// Update the DB

rw_access.signal();

writer_counter--;

if (writer_counter == 0)
rw_permit.signal();

rw_permit.wait();

reader_counter++;

if (reader_counter == 1)
rw_access.wait();

rw_permit.signal();

// read the DB

// read the DB

// read the DB

reader_counter--;
if (reader_counter == 0)
rw_access.signal();

Semaphore rw_access
Semaphore rw_permit
int reader_count
int writer_couint

111




