
Process/Thread
Synchronization

1

code

data

heap

stack stack stack

Concurrent threads

Shared resources

2

Similar issues with concurrent processes!!!

Interruptable Points ⟶ Race Condition
void wife() {
 // more code

 acct -= 500;

}

// in assembly

 mov %r3,acct

 sub %r3,20

 mov acct,%r3

void husband() {
 // more code

 acct -= 20;

}

// in assembly

 mov %r4,acct

 sub %r4,500

 mov acct,%r4

I.P.

I.P.

I.P.

I.P.

I.P.

I.P.

I.P.

I.P.

3

Context switching
may cause issues

How to avoid
“Race Condition”

4

Synchronization Mechanism

5

6

7

Concurrent Walk by N people
Sharing Common Floor Space

Concurrent Process Synchronization Model

8

Process
or

Thread

Process
or

Thread

Process
or

Thread

Shared Resource

coordinated circuit coordinated circuit

Goal: develop synchronization mechanism

● Implement the coordinated “traffic light” paradigm (“STOP” and “GO”)
● Use software solution

○ Design “STOP” and “GO” mechanisms using ordinary program variables (integer counters,
boolean flags, etc.) entirely in user space (without OS assistance)

○ Design them with OS assistance

● Use hardware solution
● Combination and software and hardware solution

9

Producer - Consumer Problem

Two Processes & One Shared Buffer

10

Real Example: Video Streaming

11

12

(Shared) Video Buffer
(Fixed Capacity)

Producer

Consumer

Internet

Display

Producer/Consumer: shared buffer & counter

producer consumer

1 05 4 3 27 6

Circular Buffer
counter = 4

13

Producer/Consumer: shared buffer & counter

producer consumer

1 05 4 3 27 6

(non-shared)
in = 5 counter = 4

(non-shared)
out = 1

14

Producer/Consumer: shared buffer & counter

producer* consumer

1 05 4 3 27 6

in = 6 counter = 5 out = 1

15

Producer/Consumer: shared buffer & counter

producer consumer*

1 05 4 3 27 6

in = 6 counter = 4 out = 2

16

Producer/Consumer: shared buffer & counter

producer consumer*

1 05 4 3 27 6

in = 6 counter = 3 out = 3

17

Producer/Consumer: shared buffer & counter

producer consumer*

1 05 4 3 27 6

in = 6 counter = 1 out = 5

18

Producer/Consumer: shared buffer & counter

producer consumer*

1 05 4 3 27 6

in = 6 counter = 0 out = 0

Can’t consume further!!!

19

Producer/Consumer: shared buffer & counter

producer consumer*

1 05 4 3 27 6

in = 7 counterer =
1

out = 5

20

Producer/Consumer: shared buffer & counter

producer consumer*

15 4 3 27 6

in = 0 counter = 2 out = 5

the buffer is circular
21

Producer/Consumer: shared buffer & counter

producer consumer*

05 4 3 27 6

in = 1 counter = 3 out = 5

22

1

Producer/Consumer: shared buffer & counter

producer consumer*

05 4 3 27 6

in = 1 counter = 8 out = 5

23

1

Can’t produce further

Producer/Consumer with Bounded Buffer

● Consumer has to wait/block when the buffer is empty
● Producer has to wait/block when the buffer is full
● Can’t assume strict alternation
● Can’t assume relative speed between producer/consumer

24

For now: use busy wait to block a process/thread

while (some_condition) {
 // do nothing
}

// without curly brackets
// put a semicolon
while (some_condition) ;

Group Exercise: Write Producer/Consumer Code

/* producer */

while (true) {
 p_item = produce_item();
 // put p_item into buffer

}

/* consumer */

while (true) {

 // get c_item from buffer
 consume_item(c_item);
}

int counter; /* item count */
Item buff[N]; /* buffer for storing items */

Shared variables

25

Producer/Consumer (almost a solution)
/* producer */
in = 0;
while (true) {
 p_item = produce_item();

 while (counter == BUFF_SIZE)
 /* do nothing */;
 buff[in] = p_item;
 counter++;
 in++;
 in %= BUFF_SIZE;
}

/* consumer */
out = 0;
while (true) {

 while (counter == 0)
 /* do nothing */;
 c_item = buff[out];
 counter--;
 out++;
 out %= BUFF_SIZE;
 consume_item (c_item);
}

26

Critical Section: Model & Formalism

27

Model for Shared Access

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

code that requests permission for entering the CS

code that notifies the end of shared access

code that manipulates shared data/resources

Process interested in entering CS
Process NOT interested in entering CS

28

Producer/Consumer Code
/* producer */
in = 0;
while (true) {
 p_item = produce_item();

 while (counter == BUFF_SIZE)
 /* do nothing */;

 buff[in] = p_item;

 counter++;

 in++;
 in %= BUFF_SIZE;
}

29

entry section

critical section

exit section

remainder section (after)

remainder section (before)

/* consumer */
out = -1;
while (true) {

 while (counter == 0)
 /* do nothing */;

 c_item = buff[out];

 counter--;

 out++;
 out %= BUFF_SIZE;
 consume_item (c_item);

}

Requirements for Solution to CS Problems

A good solution must guarantee

● Mutual Exclusion (only one may gain entry)
● Progress case I (gain entry without other contenders present)
● Progress case II (gain entry with other contenders present)

○ Neither Deadlock, Nor Livelock

● No Starvation/Bounded Waiting (no indefinite re-entry)

30

Limit Entry – Make Progress – Fair Progress

Mutual Exclusion (ME)
At most one process should be allowed to be in its critical section

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

31

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

Progress: Case I (PC1)
If only one process is interested in entering its CS, that process should be allowed to proceed

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

32

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

Progress: Case II (PC2)
If two processes are interested in entering its CS, one of them should be allowed to proceed

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

33

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

Either/Or

Not Mutually
Exclusive

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

Both

Deadlock or
Livelock

Bounded Waiting (BW)
A process should not be allowed to reenter indefinitely starving others

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

34

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

Prove (Direct or By Contradiction)
Disprove & Counter Example(s)

35

Prove or Disprove?

36

● First try hard to break the code by considering all possible cases of
context switching, i.e. find a counterexample to disprove

● In the process (of trying to break the code, but you can’t find one),
you usually find an insight how to prove the correctness

General Approach of Proving/Disproving

● Approach your code analysis as if your are debugging a program
○ Place breakpoints
○ Inspect all variables
○ Analyze what can/will happen to the process(es) based on the values of their variables
○ Incorporate context switching

● Breakpoint locations (refer to the illustrations in previous pages)
○ ME: freeze one process inside its Critical Section, freeze the other in its Entry Section
○ PC1: freeze one process inside its Entry Section
○ PC2: freeze both processes inside their respective Entry Section
○ BW: freeze one process inside its Entry Section, place (don’t freeze) the other inside its

Critical Section and move it through the rest of the code and reenter

37

Disproving (Showing that Code is Poorly Design)

● Disproving XYZ means showing that a code does not guarantee XYZ
○ Disproving ME means showing that a code does not guarantee Mutual Exclusion

● Disproving progress case I is generally easier (it involves only ONE
process)

● General approach (for disproving mutual exclusion, progress case II, and
bounding waiting)

○ look for ONE context switching scenario that would fail the code

38

Proof Guidelines

39

● First, try to break the code (disprove) for the property in question (mutual
exclusion, progress I, progress II, or bounded waiting) by looking for a
scenario of (multiple) interruptible points and (multiple) context switching

● Next (after unable to break the code), come up with a formal proof
○ (either) Direct proof technique
○ (or) Proof by contradiction
○ In both routes of proof: analyze the value of all the variables (as if you are debugging the

code)

40

Attempt to break the code by looking for a (counter)
example involving interrupts and context switches

Find
one?

You successfully disprove the code.
i.e. the code failed to guarantee

the property in question

Yes

Provide a formal proof to show
that the code guarantees the

property in question

Direct Proof Proof by ContradictionOR

Proof by Contradiction

● Begin by claiming the opposite of the statement you attempt to prove
○ To proof “the earth is round” you begin by claiming “supposed the earth is NOT round”

● Analyze all the logical consequences from the supposition.
○ In code: analyze the value of all the variables when the supposition is true

● Look for a contradiction among all the logical consequences
○ In code: the variables may show impossible/contradicting values.

■ One logical consequence requires a particular variable to have value X
■ Another logical consequence requires that variable at the same time to have value

Y

41

Summary of Proving CS Solution

● Prove (or disprove) Mutual Exclusion
● Prove (or disprove) Progress Case I: only one process is interested
● Prove (or disprove) Progress Case II: both processes are interested

○ Disprove of progress may also lead to demonstration of deadlock

● Prove (or disprove) Bounded Waiting: one process is blocked in its entry
section, the other process is inside its CS and finishes, loops back and
attempts to re-enter

42

Disproving Mutual Exclusion

Initial setup

● Place both processes in their respective entry section

Goal

● Find a context switching scenario that will allow both
processes in their CS at the same time

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

43

Proving Mutual Exclusion (Direct Proof)

Initial setup

● Green inside its critical section, inspect its vars
● Blue in its entry section, inspect its vars

Goal

● Analyze the variable values to show / prove that Blue
will (busy) wait

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

44

Proving Mutual Exclusion (By Contradiction)

Initial setup (assume mutual exclusion is not guaranteed)

● Place both Green and Blue inside their respective
critical section

● Inspect the variables from each process perspective

Goal

● Find at least one contradicting fact

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

45

Bounded Waiting

Bounded Waiting: there exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a process
has made a request to enter its critical section and before that request is
granted

● if a process is (waiting) inside its entry section, the must be a limit on the
number of times other processes are allowed to reenter their critical
section

53

Disproving Bounded Waiting

Initial Setup

● Green wants to enter
● Blue is in critical section and repeatedly attempts to

(re)enter.

Goal

● Find ONE context switching scenario which would allow
Blue to re-enter its critical section indefinite number of
times

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

54

Proving Bounded Waiting (Direct Proof)

Initial Setup

● Green wants to enter
● Blue is in critical section and repeatedly attempts to

(re)enter.
● Inspect the variables from each process perspective

Goal

● Use the values of these variables to show that Blue will not
be allowed to re-enter indefinitely

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

55

Proving Bounded Waiting (by Contradiction)

Initial Setup (assume NO bounded waiting)

● Green wants to enter
● Blue is in critical section and is able to to (re)enter

indefinite number of times
● Inspect the variables from each process perspective

Goal

● Find a contradicting fact based on the value(s) of these
variables

entry section

critical section

exit section

remainder section
(after)

remainder section
(before)

56

Software Solution: User Space
(using program variables)

58

Analyze Proposed Solutions
(class handout)

59

while (true) {

}

Dekker’s Solution (for two processes) [1963]

flag[0] = true;
while (flag[1]) {
 if (turn == 1) {
 flag[0] = false;
 while (turn == 1);
 flag[0] = true
 }
}

critical section

turn = 1;
flag[0] = false;

remainder section (after)

remainder section (before)

Code for P0

while (true) {

}

flag[1] = true;
while (flag[0]) {
 if (turn == 0) {
 flag[1] = false;
 while (turn == 0);
 flag[1] = true
 }
}

critical section

turn = 0;
flag[1] = false;

remainder section (after)

remainder section (before)

Code for P1

Shared vars: int turn = 0, bool flag[2] = {false, false} 60

while (true) {

}

while (true) {

}

Peterson’s Solution (for two processes) [1981]

flag[0] = true;
turn = 1;
while (flag[1] && turn == 1);

critical section

flag[0] = false;

remainder section (after)

remainder section (before)

flag[1] = true;
turn = 0;
while (flag[0] && turn == 0);

critical section

flag[1] = false;

remainder section (after)

remainder section (before)

Code for P0 Code for P1

Shared vars: int turn = 0, bool flag[2] = {false, false} 61

Hardware Solution

64

Hardware Solution

● Entry sections/exit sections typically requires a sequence of machine
instructions that allow interruptible points in between

● Hardware Solutions
○ Disable Interrupt?
○ Implement the entry/exit section using ONLY ONE machine instruction

■ TestAndSet: return the old value (of a variable) and set it to a new value
■ CmpAndSwap: return the old value (of a variable) and conditionally set it to a new

value

65

TestAndSet/TS[L] and CmpAndSwap/CAS

bool test_n_set (bool *lok)
{
 bool old = *lok;

 *lok = true;
 return old;
}

int cmp_n_swap (int *lok, int expected, int new_val)
{
 int old = *lok;

 if (*lok == expected)
 *lok = new_val;
 return old;
}

● The “C” functions below describe only the semantic of the TSL and CAS assembly instructions
● TSL: update a “lock” and set the CPU status register using the old value of the lock
● CAS: similar to TSL, but update the lock only if a condition is met

66

Quick Review of Loops in Assembly
(Compiler Explorer)

67

Assembly instructions: Test and Set
Entry code
spin: ts lock # copy old value of lock to accumulator, then set lock to 1
 jnz spin # if accumulator WAS NOT zero, try again

Exit code
 sub lock, lock

68

Entry code
spin: bts lock,0 # copy bit-0 of lock to Carry Flag before setting the bit
 jc spin # if lock WAS non-zero, try again

Exit code
 sub lock,lock

Intel x86

lock is 0 when the “room” is NOT locked

Assembly instructions: Compare & Swap
Entry Code
Spin: cas lock,0,1 # if lock == 0 set lock to 1, evaluate its old content
 jnz spin

Exit code
 sub lock,lock

69

Entry Code
 mov edx,1
spin: mov eax,lock
 test eax,eax
 jnz spin # if lock is not zero, try again
 cmpxchg lock,edx # IF lock == eax, set lock to edx ELSE eax = edx
 test eax,eax
 jnz spin

Exit code
 sub lock,lock

Intel x86

while (true) {

}

Spinlock with TS Spinlock with CAS

remainder section (after)

remainder section (before)

again:
 ts lock
 jnz again

 sub lock,lock

critical section

lock is a shared variable
70

while (true) {

}

remainder section (after)

remainder section (before)

again:
 cas lock,0,1
 jnz again

 sub lock,lock

critical section
of process B

while (true) {

}

Generalized “Peterson’s Solution” (for N tasks)

waiting[i] = true;
test = true;
while (waiting[i] && test)
 test = test_and_set(&lock);
waiting[i] = false;

critical section of Pi

p = (i + 1) mod N
while (p != i && !waiting[p])
 p++; // mod N
if (p == i)
 lock = false;
else
 waiting[p] = false;

remainder section (after)

remainder section (before)

Code for Pi Code for Pj

while (true) {

}

waiting[j] = true;
test = true;
while (waiting[j] && test)
 test = test_and_set(&lock);
waiting[j] = false;

critical section of Pj

p = (j + 1) mod N
while (p != j && !waiting[p])
 p++; // mod N
if (p == j)
 lock = false;
else
 waiting[p] = false;

remainder section (after)

remainder section (before)

waiting[] and lock are shared (initialized to false). Other vars local 72

