
Threads

Why (Multi) Threads?

Multithreading Real-World Examples

● YouTube player
○ UI control thread
○ Audio playback thread
○ Image frames playback threads
○ Network data fetcher thread
○ Caption thread
○ anything else?

● Smart IDEs
○ Text editor thread
○ Indexer (for text auto complete)
○ Linter thread
○ Compiler thread
○ Unit tester thread
○ Language Server Protocol in VSCode

https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

Single Threaded Processes
vs.

Multi-Threaded Processes

Parent-Child: Separate Flow of Execution
/* parent */
int main() {
 pid_t who = fork();
 if (who == 0) {
 /* Child work begins here */

 // more code not shown

 exit (0xBEEF);
 }
 else {
 /* Parent work begins here */

 // more code not shown

 int status;
 who = wait (&status);
 }
 return 0;
}

/* child */
int main() {
 pid_t who = fork();
 if (who == 0) {
 /* Child work begins here */

 // more code not shown

 exit (0xBEEF);
 }
 else {
 /* Parent work begins here */

 // more code not shown

 int status;
 who = wait (&status);
 }
 return 0;
}

Two Single-Threaded Proceesses

code

data

heap

St1 St2 St3

Single-Threaded vs. Multi-Threaded Process

code

data

heap

stack

3x faster?

Process

Thread

Process

Thread

Thread

Thread

Inter (Process|Thread) Communication

Process 1

Thread

CodeProcess 2

Thread

pipe(s) or shared mem

Thr1 Thr2

Data

Heap

Stack Space

Stack 1 Stack 2 Processes exchange data via
external structure

Exchanging data via
internal structure

(heap and data
sections)

(Data|Heap|Stack) Sections

#include <stdio.h>

char x[50]; // global var

void my_func(int a) {
 double b;
}

int main() {
 char y[50];
 char z*;

 z = malloc(20);
 // my_func();
}

Code

Data

Heap

Stack

x (50 bytes)

z (4 bytes)

y (50 bytes)

20 bytes

Stacka (4 bytes)
b (8 bytes)

Parallel ⇒ Concurrent
Concurrent ⇏ Parallel

Parallelism requires concurrency

but

Concurrency does not guarantee parallelism

0 321 4 5 7 8 159 13 1410 16 18116 12 17

T1: 5ms T2: 7ms T3: 6ms

Concurrent execution on ONE CPU

Concurrent execution on each CPU (core)
Parallel execution across both CPU (core)s

CPU 0

CPU 1

Total: 18ms

Concurrency vs. Parallelism

● Concurrent systems
○ Multiple tasks taking turn to use (one) CPU to make progress together

● Parallel systems
○ Multiple tasks running simultaneously on multiple CPUs (cores)
○ A program typically consists of serial tasks (tasks that can only run on one CPU)

and parallel tasks (tasks that are independent of each other and can run in
parallel on multiple CPUs)

Concurrency

Concurrency with multiple processes

● Each process is single-threaded
● Overhead of running

multiple-processes (mainly
space/memory overhead)

● Requires IPC channels (socket, pipe,
signals, files, …) to communicate

● Due to OS protection policy
○ it requires more work to allow these

processes share data
○ It is easier to write safe concurrent

code
● Processes can be distributed across

multiple distinct machines

Concurrency with multiple threads

● Several flows of execution sharing
the same process image (same code,
same data, same heap, but different
stacks)

● Does not require communication
channels for exchanging data

● Concurrent code may be unsafe
(race conditions)

Concurrent Processes
Code Data Heap Stack

Code Data Heap Stack

Code Data Heap Stack

Code Data Heap

Stack 1

Stack 2

Stack 2

Concurrent Threads

P1

P3

P2

T1

T3

T2

3 threads across 3 (single-threaded) processes

3 threads within one process

Design for Parallelism

Time for lunch?

Task Parallelism

Bun &
meat

Tomato
& pickles

Ketchup &
mustard

Fries &
Wrap

Data Parallelism

Potential Conflicts?
Data Parallelism vs Task Parallelism

Design for Parallelism

● Task Parallelism (Separation of Concerns)
○ Several “independent” modules which run in parallel on separate CPUs
○ Each module runs a different program/set of instructions
○ Examples: music streaming (one thread reads the song bytes from the net, one

thread plays the music on the audio device, one thread responds to UI actions)

● Data Parallelism (Increased Performance)
○ To handle massive amount of data, smaller subsets of data deployed to one CPU
○ Each CPU runs the same program / set of instructions
○ Examples:

■ mergesort (each CPU runs the same algorithm but on a smaller set of data),
■ graphics shaders (each fragment processor runs the same function to

determine the final shade of one pixel)

SIngle-Threaded Process

Process state vs. Thread State?

Thread #1

running

blocked

ready

terminatedcreated

Process (a “container” for multiple threads)

Process state vs. Thread State?

Thread #1

running

blocked

ready

terminatedcreated

Thread #2

running

blocked

ready

terminatedcreated

Thread #4

running

blocked

ready

terminatedcreated

Thread #3

running

blocked

ready

terminatedcreated

Thread Implementation

● OS has native support to manage threads
○ Threads scheduling by the OS
○ OS provides system calls to create/destroy threads
○ User-Level (ULT) and Kernel-Level Threads (KLT)

● OS does not support threads natively
○ Threads are created and managed by a library
○ Thread scheduling by the library
○ OS can schedules only processes
○ User-Level Threads (ULT) only

OS

User App

PP

User Level
Thread

Kernel
Level

ThreadProcess

User App

P

OS

ULT vs KLT

OS

User App

Thread Library

P

OS

User App

Thread Library

P P

Many-to-Few

PUser Thread KLT/LWP Process

No KLT support by OS OS provides syscalls for creating KLTs

User App

P P

One-to-One
OS

ULT Demo: thread-manager.c
swap_context() [EOS]

ULT to KLT Mapping

● Many ULTs ⇒ One Process (when OS does not support KLTs)
○ Thread management by thread library in user space
○ Multiple user threads cannot run in parallel

● Many ULTs ⇒ One KLT
○ Thread management by thread library in user space
○ Multiple user threads cannot run in parallel

● One ULTs ⇒ One KLT
○ Multiple user threads can run in parallel, each thread is scheduled directly by OS

● Many ULTs ⇒ Few KLTs
○ Many ser threads are multiplexed to smaller or equal number of kernel threads
○ Can be used by the system puts a limit on max KLTs users can create
○ Multiplexed ULTs vs bound ULTs

Misconceptions

● UL threads are faster to run
● UL threads run (only) in user-mode

● KL threads do not have to be associated with a process
● KL threads run (only) in kernel-mode
● KL threads are needed to execute system calls

Thread state vs Process state (diagram)

Thread Implementations

● POSIX Threads (either user space or kernel space)
○ C
○ C++

● Windows (kernel lib)
● Java Threads (running on JVM)

○ JVM on Linux depends on POSIX Threads
○ JVM on Windows depends on Windows Kernel Lib

POSIX Threads

POSIX Thread vs. Process APIs

POSIX Threads Description Process
Equivalent

pthread_create() Create a new thread fork()

pthread_self() Return the thread ID of the caller getpid()

pthread_cancel() Send a request to cancel a thread. ???

pthread_detach() Detach a thread (make it unjoinable) “orphan”

pthread_exit() Terminate the calling thread exit()

pthread_kill() Deliver a signal to a thread kill()

pthread_join() Join with a terminated thread wait()

When the parent process dies, the “orphan” will also die

fork() vs pthread_create()

● fork(): both parent and child processes resume at the next
statement following fork() call

● pthread_create():
○ Parent thread resumes at the next statement
○ Child thread resumes at a function

Examples

● Three examples on GitHub gist
● Java (happy.java)

○ implements Runnable
○ extends Thread

● C (happy-pthr.c)
○ pthread library

● C++11 (happy.cpp)
○ #include <thread>

○ #include <future>

○ std::async

○ std::future

Posix Threads: Basic Example

#include <pthread.h>
#include <stdio.h>

void* hello(void* arg) {
 printf ("Hello C Thread\n");
 return NULL;
}

int main() {
 printf ("From main thread\n");
 pthread_t one;
 pthread_create(&one, NULL, hello, NULL);
 pthread_join(one, NULL);
 printf ("About to exit\n");
 return 0;
}

#include <thread>
using namespace std;

void hello() {
 cout << "Hello C++ thread\n";
}

int main() {
 cout << "From main thread\n";

 thread one(hello);

 one.join();
 cout << "About to exit\n";
 return 0;
}

C C++11

https://gist.github.com/a7e25cb3984e5d2b8e16

Posix Threads: Passing Argument(s)

#include <pthread.h>
#include <stdio.h>

void* hello(void* arg) {
 int *num = (int *) arg;
 printf ("Hello C Thread %d\n", *num);
 return NULL;
}

int main() {
 printf ("From main thread\n");
 pthread_t one;
 int val = 53;
 pthread_create(&one, NULL, hello, &val);
 pthread_join(one, NULL);
 printf ("About to exit\n");
 return 0;
}

#include <thread>
using namespace std;

void hello(int num) {
 cout << "Hello C++ thread" << num;
}

int main() {
 cout << "From main thread\n";

 thread one(hello, 53);

 one.join();
 cout << "About to exit\n";
 return 0;
}

C C++11

Posix Threads: Return Result
#include <future>
#include <iostream>

using namespace std;

int hello() {
 cout << "Hello C++ thread\n";
 return 71;
}

int main() {
 cout << "From main thread\n";
 auto one = async (hello);
 cout << "About to exit\n";
 cout << one.get();
 return 0;
}

#include <pthread.h>
#include <stdio.h>

void* hello(void* arg) {
 printf ("Hello C Thread\n");
 return (void *) 71;
}

int main() {
 printf ("From main thread\n");
 pthread_t one;
 pthread_create(&one, NULL, hello, NULL);
 int val;
 pthread_join(one, (void *) &val);
 printf ("About to exit %d\n", val);
 return 0;
}

C C++11

async/future = run asynchronously now, get the
result later (a time in the future)

Multi-Process vs. Multi-Thread

● In an multi-process application, the processes are isolated from
each other. Data manipulation errors in one process won’t affect
the other processes

● In an MT application, the threads share the same data. Data
manipulation errors by one thread can easily spread to the others

● Potential bugs in MT-app
○ Sharing local variables created in a thread with other threads
○ Deallocating a resource by one thread while the other threads are using it
○ Race conditions
○ Debugging is hard (opportunity for you to make a MT debugger)

pthread_cancel()

● Thread cancelability state: enabled (default) or disabled
● Thread cancelability type: deferred (default) or asynchronous

○ A thread with async cancelability can be cancelled anytime!

● A deferred cancelation: postpone termination until the thread
reaches a “cancellable library call / system call”.
○ Refer to man 7 pthreads for the list of cancellation points

Thread Cancellation

Thread 1

Thread 2

Asynchronous Cancellation

Thread 2 cancelled

Thread 1

Thread 2

Deferred Cancellation

Thread 2 cancelled

phread_cancel()

phread_cancel()

Non-cancellable lib/syscalls Cancellable lib/syscalls

man 7 pthreads
● Thread-safe functions: functions that can be safely called from a

multi-threaded program
● List of thread cancellable functions (a.k.a cancellable points)

System Calls in MT Thread Processes

Invoking the following system calls in a multi-threaded process may
affect other threads within the same process:

● Blocking system calls
● fork()
● exec*()
● signal() and kill()

OS

User App

PP

User Level
Thread

Kernel
Level

ThreadProcess

User App

P

OS

Blocking SysCalls from User App

scanf() scanf()

scanf()

scanf()

count++ count++

scanf() from the red
thread blocks the process

scanf() from the red thread
blocks only the left KLT
and not the process

Thread Library

Design Issues: Blocking System Calls

● In a ULT only implementation, blocking calls issued by a single
thread will place the entire process into a blocked state
○ Solution: replace blocking system calls with non-blocking

thread library service calls, so the thread library can
postpone the actual system call until the "time is right"

● Kernel-Thread implementation does not suffer from this issue

System Call: fork()

● What to duplicate when fork() is issued by a thread?
○ Do we duplicate all the threads?
○ Do we duplicate just the thread that calls fork()?

● Linux fork() creates a single-threaded child process

fork(): is the child ST or MT?
Parent code

data

heap

St1 St2 St3

fork()

Child code (MT)

data

heap

St1 St2 St3

fork()

Child code (ST)

data

heap

St2

fork()

System Call: exec()

● exec() on MT process behaves similarly to ST process
● The entire process image is replaced

○ All the [other] threads in the process will disappear
○ After a successful exec() the new process is always

single-threaded (until that process creates more
threads)

exec(): the child is always ST
Parent code

data

heap

St1 St2 St3

exec(“abc”)

Child

Code of abc

data of abc

heap of abc

Stack of abc

System Call: signal()/sigaction()/kill()

● Which thread(s) should receive the signal?
○ Deliver to the thread to which the signal applies?

■ example: SIGSEGV, SIGFPE
○ Deliver to all the threads in the process?

■ example: SIGINT
○ Deliver to a specific thread?

■ When signal is raised by
pthread_kill(____, _____);

Amdahl’s Law

● A program of M instructions running on a CPU with speed of V
insts/sec
○ Time to complete when the entire program runs on ONE CPU: M/V second

● Assume s is the fraction of the serial task
therefore p = (1- s) is the fraction of the parallel task.

When N CPUs are available:

● The serial portion (s) of the program runs on ONE CPU will
complete in sM/V

● The parallel portion (1-s) runs on N cpus will complete in
(1-s)M/(NV)

Amdahl Speed Up

 time on 1 CPU
Speedup = =
 time on N CPUs

Amdahl Graph Live Graph on Desmos

Serial Portion (s)
0.5

0.25
0.1

0.05

Max Speedup (1/s)
2x
4x

10x
20x

Demo: Co-routines
(JavaScript/Kotlin/Python/C)

https://www.desmos.com/calculator/n1rwzb4lpo

