
Unix Process
Management

1

Process ≠ Program

2

Source ⇒ Binary Executable ⇒ Process (Image)
int main() {
 printf (“Hello”);
 return 0;
}

CODE

DATA

CODE

DATA

HEAP

STACK

low addr

high addr

● Code and data sections are generated at compile-time
○ Data whose type and size can be determined at compile time

● Heap and stack are created at runtime
● Image snapshot

3

compile
run

Data Section vs. Heap vs. Stack
● Data section

○ Global variables (lifetime is NOT tied to any function, but tied to the entire program)

● Heap
○ Dynamically allocated memory (malloc(), Java new, C++ new)

● Stack
○ Local variables (lifetime is tied to the function lifetime)
○ C fixed length arrays
○ Function Parameters
○ Return addresses

4

Memory Allocation: (PollEv.com)
float here;

int main() {
 int val;
 float *numbers;
 numbers = calloc (100, sizeof(float));
 for (........) {

 }
 free (numbers);
 return 0;
}

Data section, stack, or heap?

● here is allocated in ______________

● val is allocated in ____________

● numbers is allocated in ___________

● The 400 bytes from calloc() is allocated in

Assume 4-byte floats

5

fork()
● Create a new (child) process using the current copy of

the parent image
○ Parent and child processes are like twins!

● At the time of fork()
○ Code section: exact duplicate of each other
○ Heap section: exact duplicate of each other (most likely)

● After return from fork()
○ Data (or Stack) section may differ by a few bytes

● Thereafter, the two images are independent/unrelated
○ Parent and child share NOTHING (not actually TRUE, further

explanation later)

7

https://pollev.com/hansdulimart689

Fork()

/* parent */
int main() {
 printf (“Begin\n”);
 fork();
 printf (“PID = %d\n, getpid());
 printf (“End\n”);
 return 0;
}

8

Fork()
/* parent */
int main() {
 printf (“Begin\n”);
 fork();
 printf (“PID = %d\n, getpid());
 printf (“End\n”);
 return 0;
}

9

Fork()
/* parent */
int main() {
 printf (“Begin\n”);
 fork();
 printf (“PID = %d\n, getpid());
 printf (“End\n”);
 return 0;
}

/* child */
int main() {
 printf (“Begin\n”);
 fork();
 printf (“PID = %d\n, getpid());
 printf (“End\n”);
 return 0;
}

At this point, both parent and child will run independently competing for the same CPU

a new process is created, DUPLICATING the parent process image

10

Parent & Child Time Lines

printf (“Begin”)

fork()

printf (“PID XX”)

printf (“End”)

printf (“PID YY”)

printf (“End”)

return 0;

return 0;

PARENT

CHILD

/* parent */
int main() {
 printf (“Begin\n”);
 fork();
 printf (“PID = %d\n, getpid());
 printf (“End\n”);
 return 0;
}

11

Parent & Child Time Lines (Horizontal)

printf (“Begin”) fork() printf (“PID XX”)

printf (“End”)printf (“PID YY”)

printf (“End”) return 0;

return 0;

PARENT

CHILD

/* parent */
int main() {
 printf (“Begin\n”);
 fork();
 printf (“PID = %d\n, getpid());
 printf (“End\n”);
 return 0;
}

12

Review

13

1. fork() creates a new process (child) by copying the current image (parent)
a. The child image is EXACT DUPLICATE of the parent image

2. No code/data/heap/stack are shared between parent and child
a. When one modifies its data/heap/stack the other won’t see it

3. Both processes (parent & child) will run independently and compete for
the same CPU(s) on your system
a. We never know the relative order of execution ACROSS the two processes
b. We only know the relative order of execution WITHIN each process

4. Both processes will resume execution to the next statement after
fork()

True / False?
The OS inspects each instruction of a program

before it runs on the CPU

14

Fork()
/* parent */
int main() {
 printf (“Begin\n”);
 pid_t who = fork();
 if (who == 0)
 printf (“Mug %d\n, getpid());
 else {
 printf (“Cup %d\n, who);
 printf (“Bowl %d\n”, getpid());
 }

 printf (“End\n”);
 return 0;
}

15

Fork()
/* parent */
int main() {
 printf (“Begin\n”);
 pid_t who = fork();
 if (who == 0)
 printf (“Mug %d\n, getpid());
 else {
 printf (“Cup %d\n, who);
 printf (“Bowl %d\n”, getpid());
 }

 printf (“End\n”);
 return 0;
}

fork() return value:
● ZERO (in child process)
● child PID (in parent process)

16

Fork()
/* parent */
int main() {
 printf (“Begin\n”);
 pid_t who = fork();
 if (who == 0)
 printf (“Mug %d\n, getpid());
 else {
 printf (“Cup %d\n, who);
 printf (“Bowl %d\n”, getpid());
 }

 printf (“End\n”);
 return 0;
}

/* child */
int main() {
 printf (“Begin\n”);
 pid_t who = fork();
 if (who == 0)
 printf (“Mug %d\n, getpid());
 else {
 printf (“Cup %d\n, who);
 printf (“Bowl %d\n”, getpid());
 }

 printf (“End\n”);
 return 0;
}

17

Parent & Child Time lines

printf (“Begin”)

fork()

printf (“Cup”)

printf (“Bowl”)

printf (“Mug”)

printf (“End”)

return 0;

return 0;

PARENT CHILD

printf (“End”)

/* parent */
int main() {
 printf (“Begin\n”);
 pid_t who = fork();
 if (who == 0)
 printf (“Mug %d\n, getpid());
 else {
 printf (“Cup %d\n, who);
 printf (“Bowl %d\n”, getpid());
 }

 printf (“End\n”);
 return 0;
}

18

exit() & wait()
● exit(N): terminate and report its status number (N) to parent

○ Every process in Unix/Linux (except init) has a parent
○ exit() should be called by a “child” process
○ Automatically called when returning from main()

■ return 71; translates to exit(71);

● wait(): wait for a child to terminate, and accept its status
○ wait() should be called by a “parent” process who spawns child processes

19

Parent-Child Handshake: exit() ⇔ wait()
/* parent */
int main() {
 pid_t who = fork();
 if (who == 0) {
 printf (“Mug %d\n, getpid());
 exit (93);
 }
 else {
 int status;
 who = wait (&status);
 printf (“Child status is %d\n”,
 WEXITSTATUS(status));
 }
 return 0;
}

/* child */
int main() {
 pid_t who = fork();
 if (who == 0) {
 printf (“Mug %d\n, getpid());
 exit (93); // any number you like
 }
 else {
 int status;
 who = wait (&status);
 printf (“Child status is %d\n”,
 WEXITSTATUS(status));
 }
 return 0;
}

parent output “Child status is 93”
20

Parent & Child Time lines

printf (“Begin”)

fork()

wait(&stat)

printf (“Child Status”, stat)

printf (“Mug”)

exit (93)

return 0;

PARENT

CHILD

21

Parent is blocked
17 mins inside wait()

Parent output
Child status 93

17
 m

in
ut

es

Zombies (<defunct> processes)
fork()

exit()

wait()
PARENT timeline:

CHILD timeline:

exit()
wait() call is blocked

fork()

exit()

wait()
PARENT timeline:

CHILD timeline:

exit()

child is a zombie

22

“Irresponsible” Parents (no wait()) & Orphans

fork()

exit()

PARENT timeline:

CHILD timeline:

exit()

child is a zombie

fork()

exit()

PARENT timeline:

CHILD timeline:

exit()

child is an orphan

child ‘s exit status captured by init

23

(1) child is adopted by init
(2) Its exit status captured by init

child is adopted by init

exec*(): load an external executable
● Replace the current process image with a new binary executable

○ Continue running from the “main()” of the new executable

● The new binary executable does NOT entail a new process
○ The current process is the “home” of the new binary executable

● The current process image stays intact if the replacement executable
cannot be loaded

○ Continue running from the “next” statement in the current process image

24

Photo Album ⇒ Frame + Image

25

Frame (image container)

Image

Process

Code
Data
Heap
Stack

Process image

fork()

26

Two different processes
(placeholders)

Image of bee

fork()

Image of bee

PID 2071
PID 2083

exec()

27

Same process (placeholder)

Image of bee

exec(“cardinal”)

Image of cardinal

PID 2071 PID 2071

Exec() failure

28

Same process (placeholder)

Image of bee

exec(“kf%A>B#2”)

Image unchanged

PID 2071 PID 2071

exec*() variants
● execl()/execlp(): the “list” variant

○ (command line) arguments are supplied to the new binary executable using a list

● execv()/execvp(): the “vector” variant
○ (command line) arguments are supplied to the new binary executable using an array

● the “p” suffix: use the PATH environment variable to search for the new
binary executable

● The FIRST argument to exec* is the location of the new binary executable
● The second (and remaining arguments) are arguments passed to the new

binary executable

29

exec*() demo
exec_cal.c (EOS)

30

Using exec*()
int main() {
 printf (“Begin\n”);
 execl (“/usr/bin/cal”, “Venus”, NULL);
 printf (“End\n”);
 while (1) {}
 return 0;
}

int main() {
 printf (“Begin\n”);
 execl (“/usr/bin/california”, “Venus”, NULL);
 printf (“End\n”);
 return 0;
}

when “/usr/bin/cal” replaces the process
image

● “End” will never get printed!
● the infinite while-loop will never run

“/usr/bin/california” was not found
the current process image was NOT replaced
“End” will be printed!

31

execl() vs. execv(): passing arguments

32

execl (“/path/to/myprog”, “23”, NULL);
Arg-0: |23|

execl (“/path/to/myprog”, “23”, “and me”, NULL);
Arg-0: |23|
Arg-1: |and me|

// myprog.c
void main(int argc, char*argv[])
{
 for (int k = 0; k < argc; k++)
 printf(“Arg-%d: |%s|\n”, argv[k]);
}

argc: 1

argc: 2

char* args[] = {“23”, NULL};
execv (“/path/to/myprog”, args);
Arg-0: |23|

char* args[] = {“23”, “and me”, NULL};
execv(“/path/to/myprog”, args);
Arg-0: |23|
Arg-1: |and me|

argc: 1

argc: 2

33

execl(“/usr/bin/ls”, “GVSU”, “-l”, “-a”, “-R”, NULL);

ls -l -a -R

execlp(“ls”, “GVSU”, “-l”, “-a”, “-R”, NULL);

char* arr[] = {“-l”, “-a”, “-R”, NULL};
execv(“/usr/bin/ls”, arr);

char* arr[] = {“-l”, “-a”, “-R”, NULL};
execvp(“ls”, arr);

Time To Disclose the Truth
● False statement: Parent and child processes DO NOT share any contents

of code/data/heap/stack
● Facts

○ Code section of both parent and child are exact copy of each other (shareable)
○ Heap section are very likely to be exact copy of each other (shareable)
○ Data (or stack) section may differ in a few bytes (when the return value of fork() is

saved to a global (or local) variable)

34

COW (Copy-on-Write)
● Code section (always read-only) can be shared
● Data, Heap, and Stack sections of parent and child can be shared IF these

sections are used in read-only fashion
● If either parent/child attempts to modify/write data, heap, or stack,

must be allocated its own copy (the OS does it for you)
● Class discussion: how to enforce COW?

35

Program Execution
int main() { // Program A

 while (1);
 return 0;
}

● Is program A running on the CPU at all time?
○ Why?
○ Why not?

int main() { // Program B
 int num;
 while (1) {
 printf (“Number? “);
 scanf (“%d”, &num);
 printf (“[%d]\n”, num);
 }
 return 0;
}

● Is program B running on the CPU at all time?
○ Why?
○ Why not?

● How is it different from the execution of Program A?

38

Sharing (Virtualize) the CPU?

Create N virtual CPUs out of ONE physical CPU?

39

Process State Transition Diagram

Running

Blocked

Ready

TerminatedNew
● New → Rdy: the process just created,

ready to use the CPU
● Rdy → Run: dispatched by OS to use

the CPU
● Run → Term: the process exits
● Run → Rdy: process time slice

expired
● Run → Blk: the process issued a

blocking system call (read(), sleep(),
wait() for child, wait for mouse click,
….

● Blk → Rdy: the blocking syscall
completed, the process is ready to
use the CPU again

40

Process “Eviction” from CPU

● The current process is evicted
from CPU

○ The CPU becomes vacant

● What triggers the eviction?
● What is the nature of eviction?

○ Abrupt or gradual?

● For (a) and (b), what needs to
be done to properly resume
an evicted process?

Running

Blocked

Ready

Terminated
(a)

(b)

(c)

41

How to share the CPU?
● When a program is running, its data can be found in

○ RAM (data section, heap section, stack section)
○ and also in _____________

● What are potential problems in sharing the CPU?
● Solution?
● How do we share (and avoid conflict):

○ A classroom in a campus building?
○ A CPU?

42

Context Switching
Process A

running

Kernel

Process B
running

Interrupt or syscall

Save A’s Context

Restore B’s Context

Kernel

Restore A’s Context

Save B’s Context

Interrupt or syscall

Process A (resumed)
Process A idle

Process B idle
Process B idle

context switching
time

43

44

SysCall Work by Kernel

Save Program Counter to A’s stack
//
// Other assembly instructions here
//

//
// Other assembly instructions here
//
Load Program Counter with address from B’s stack

Save CPU state of A

Restore B’s CPU state

Process Control Block (PCB)
● PCB is an OS data structure for storing important information of a process

○ Current context: CPU registers, Program Counter, control registers, ...
○ Scheduling-related information: priority, wait time, total CPU time,
○ Memory-related info: total memory, segment size, page tables,
○ I/O related info
○ Accounting info: CPU time used, memory used (real mem, virtual mem), ...

45

Process Mgmt ⇔ Processor Mgmt
● Process(or) Scheduler: dispatch a process to the CPU from the ready Q
● Queues for managing processes

○ Ready Queue: keeps all the processes who are in Ready state
○ Device Queue(s) or I/O Queue(s): keeps all the processes who are in Blocked state, waiting

for I/O completion to/from a particular device

● Schedulers
○ Short-Term or CPU Scheduler: dispatches a process from the Ready Q to use the CPU
○ Medium-Term Scheduler: decides which process gets swapped-in / swapped-out

(between RAM and swap disk)
○ Long-Term Scheduler (in a batch system): dispatch batch jobs to enter the system

46

RAM

Schedulers
Short Term
SchedulerReady Q CPU

I/O Queue(s)

Device Queue(s)

Other Queue(s)

Swap Space

Medium Term Scheduler

Batch
Jobs

Long Term
Scheduler

47

