
Ch02 OS Services

Class Discussion

Services provided by BIOS?

https://www.wikiwand.com/en/BIOS_interrupt_call

Background Info for Discussion
● Bare hardware comes with BIOS (Basic I/O System)
● How do we use these “functions”?

○ BIOS functions are invoked via software interrupt
○ List of BIOS Software Interrupt (Wikiepedia)

● BIOS loads a small program (boot loader) from known locations
○ Boot block of hard drive, CDROM, DVD-ROM, USB drive, Network, ….

● The boot loader brings the rest of the OS code
● The OS replaces the BIOS services with its own

○ But we still invoke them via software interrupt

Interrupts: Response in HW & Vector Table
MEM[SP] = PC

load PC with
address of

interrupt handler

SP: Stack Pointer

0x24A6

0x003a

0x514AD

0x78300

0x337B

0x67AC2

0

1

??

2

3

4

Interrupt Vector Table
(Intel: Interrupt Descriptor Table)

Interrupt #2

Set PC to 0x514AD

● Initially at address ZERO in BIOS ROM
● Can be overridden by setting IDT Register

https://www.wikiwand.com/en/BIOS_interrupt_call

How do you transform a bare HW (+ BIOS) into:
● Windows?
● OSX?
● Linux?
● others?

BIOS vs. OS
● BIOS of a physical machine (bare hardware) provides very basic services
● Bare hardware + OS ⇒ Computing Environment of a specific “flavor”

○ Bare hardware + Linux = Linux Machine
○ Bare hardware + Windows = Windows Machine

● On a Linux machine, the kernel code replaces/enhances the basic BIOS
functions with its own

● What if you run a (Linux) system program that creates an illusion of a bare
hardware (+ BIOS)?

System Calls
● CPU enters its Interrupt Cycle when

○ There is a hardware interrupt triggered externally / asynchronously
○ A program issues a software interrupt (assembly instruction)

● System Call Implementation
○ Linux/OSX

■ On 32-bit architecture INT 0x80 (assembly instruction)
■ On 64-bit architecture SYSCALL or SYSENTER (assembly instruction)

○ DOS/Windows: INT 0x21 or INT 0x2E

● System calls may require parameters to work with
○ How do you supply the parameters?

Hello World in Assembly

 ORG 100H

 MOV DX,msg ; Addr of string to print
 MOV AH,9 ; Func#9: display string
 INT 21H ; DOS call

 MOV AH,4CH ; Func#4C: exit
 INT 21H ; DOS call

msg DB “Hello World”,”$”

 GLOBAL _start
SECTION .text
_start
 MOV EAX,4 ; write()
 MOV EBX,1 ; stdout
 MOV ECX, msg
 MOV EDX, msg.len
 INT 80H ; Linux call

 MOV EAX,1 ; exit()
 INT 80H ; Linux call

SECTION .data
msg DB “Hello World”,”$”
.len EQU $ - msg

MSDOS GLOBAL _start
SECTION .text
_start
 MOV RAX,1 ; write()
 MOV RDI,1 ; stdout
 MOV RSI, msg
 MOV RDX, msg.len
 SYSCALL ; Linux call

 MOV RAX,60 ; exit()
 SYSCALL ; Linux call

SECTION .data
msg DB “Hello World”,”$”
.len EQU $-msg

Linux 32-bit Linux 64-bit

Examples: Input/Output
● Short program in various languages: C, C++, Assembly, Rust

○ On WSL
○ On Docker Container (Debian)?
○ On Docker Container DOS Box?
○ On Ubuntu VM

● Use strace to show write() system calls

Bare Hardware

BIOS (firmware)

Windows 10

Bare Hardware

BIOS (firmware)

Linux

Bare Hardware

BIOS (firmware)

OSX

Bare Hardware

BIOS (firmware)

void main() {
 printf (“Hello world”);
}

printf() ⇒ WriteConsole() printf() ⇒ write() printf() ⇒ write() printf() ⇒ ???

INT 0x2E or INT 0x21 INT 0x80 INT 0x80 INT 0x10
(Put Char to Screen)

Compiler

OS runtime

One physical hardware with four different “Look and Feel”

IDT/IVT and IDT register (BIOS vs. OS)

0x24A6

0x003a

0x514AD

0x78300

0x337B

0x67AC2

0x0000 0000 [0]

0x0000 0008 [1]

0x0000 0010 [2]

0x0000 0018 [3]

0x0000 0020 [4]

0x0000 07F8 [255]

BIOS IVT must begin at absolute address 0x0000 0000
(in ROM)

0x0000 0000IDT

0x80458

0x65118

0x287140

0x982F0

0x87D3C4

0x98330

0x002F 0000 [0]

0x002F 0008 [1]

0x002F 0010 [2]

0x002F 0018 [3]

0x002F 0020 [4]

0x002F 07F8 [255]

0x002F 0000IDT

Your OS IVT may begin anywhere in RAM

Multiple IVTs but ONLY ONE IDT register

0x80458

0x65118

0x287140

0x982F0

0x87D3C4

0x98330

0x002F 0000 [0]

0x002F 0008 [1]

0x002F 0010 [2]

0x002F 0018 [3]

0x002F 0020 [4]

0x002F 07F8 [255]

0x63220

0xFF380

0x54398

0x8A548

0x70024

0x8832C

0x001B 0000 [0]

0x001B 0008 [1]

0x001B 0010 [2]

0x001B 0018 [3]

0x001B 0020 [4]

0x001B 07F8 [255]

0x002F 0000
IDT

register

or 0x001B 0000

Virtual Machines

Bare Hardware

BIOS (firmware)

Windows 10

Bare Hardware

BIOS (firmware)

Linux

Bare Hardware

BIOS (firmware)

OSX

Bare Hardware

BIOS (firmware)

VirtualBox

“BIOS”

VirtualBox

“BIOS”
VirtualBox

“BIOS”

Win 10
“Look and Feel”

Bare HW
“Look and Feel”

Linux
“Look and Feel”

OSX
“Look and Feel”

Bare HW
“Look and Feel”

Bare HW
“Look and Feel”

Bare HW
“Look and Feel”

Guest OS Should Run in User Mode
(not in Kernel Mode)

Why?

Virtual Machines vs. Emulators
● A Virtual Machine creates an environment that mimics the bare

hardware of the host (as much as possible)
● An Emulator creates an environment that mimics a particular bare

hardware, NOT necessarily that of the host
○ Android Emulator

● Implications
○ Instructions running on a VM can run directly on the host CPU
○ Instructions running on an emulator must first be translated to equivalent instructions on

the host CPU

System Calls on VM

How to handle privileged instructions issued by a
program running in guest OS?

Windows 10

Bare Hardware

BIOS (firmware)

Linux

VirtualBox
Linux App
 INT 0x80

Win10 App
 INT 0x2E

INT 0x80 trapped by Linux INT 0x2E trapped by VirtualBox

1

2a rerouted to WIn10

Or 2b rerouted to Linux
As INT 0x80

Windows Guest on Linux Host

Linux

Bare Hardware

BIOS (firmware)

Windows

VirtualBox
Win10 App
 INT 0x2E

Linux App
 INT 0x80

INT 0x2E trapped by Windows INT 0x80 trapped by VirtualBox

1

2a rerouted to Linux

Or 2b rerouted to Win10
as INT 0x2E

Linux Guest on Windows Host

System Calls on VM
● Install a hypervisor / VM monitor that intercepts any system calls

originating from a VM
○ CPU should have a additional bit to distinguish “host context” vs. “guest context”

● System calls in host context are handled without involving hypervisor
● System calls in guest context are trapped and analyzed by hypervisor and

rerouted to either host OS, or guest OS

● Without Virtualization
○ CPU operates in TWO modes: Kernel Mode and User Mode
○ Only 1-bit is required in the CPU status

● With Virtualization, extra (hardware) bit required
○ CPU operates in FOUR modes

■ (Kernel | User) + (Real| Virtual)
■ 2 bits requires in the CPU status

Hardware Protection Support for Virtualization

Real/Virt User/Kern CPU Operation Mode

0 0 Kernel mode non-virtualized

0 1 User mode non-virtualized

1 0 Kernel mode virtualized

1 1 User mode virtualized

JVM (Java “Virtual Machine”)
is not a virtual machine!

JVM + JIT (Just In Time compiler)
are almost a virtual machine!

Virtual Machines vs. Linux Containers
● Each VM instance loads a copy of guest OS

○ Each guest OS is totally isolated from the other guest OSes

● Linux containers are a “minified” Linux environment
○ Multiple Linux Containers running on one host can share the same copy of host kernel
○ Each instance of Linux Container is isolated/sandboxed from the others

● Supporting Linux features for implementing containers
○ chroot: allows a particular directory in a Linux FS to be used as a shadow root
○ kernel namespace: resources in a Linux system are assigned a unique name

Linux Kernel (LK)

Containers

Bare Hardware

BIOS (firmware)

Linux Kernel

VirtualBox

“BIOS”

Linux
“Look and Feel”

Docker Daemon

Bare Hardware

BIOS (firmware)

Linux
“Look and Feel”

Virtual LK #1 Virtual LK #1

Linux Kernel
“Look and Feel”

Windows NT Kernel

WSL: Lightweight VM = mergeOf(VM, Container)

Bare Hardware

BIOS (firmware)

Windows
“Look and Feel”

Virtual LK #1 Alpine

Ubuntu
“Look and Feel”

Alpine
“Look and Feel”

Hypervisor

WSL + Linux 4.29 Kernel

