HTTP

HTTP

HyperText Transfer Protocol

Invented by Tim Berners Lee @ CERN

A protocol for delivering resources over the web
TCP/IP connections, default (server) port 80
HTTP client & HTTP server

Other network Transfer Pratocols

FTP: File Transfer Protocol

FTPS: Secure FTP

SMTP: Simple Message Transfer Protocol
NTP: Network Time Protocol

Why learn the details of HTTP?

(Later) How to programmatically initiate
HTTP requests from your program

Web Client/Server Architecture

(3) Send “contents” (HTML + CSS + JS & other data)

(4) Present “contents”

(6) Handle user input

(1) Send “user input”

HTTP Communication Model

request

HTTP Client oy
re
HTTP Client oot response |

HTTP Server

e

Clients initiate the connection!!!

request
HTTP Client

Transaction Timeline (TCP Sockets)

HTTP Client HTTP Server
TCP Connect
Connect OK
<
Client write
H
TTP equest

Server read
Server write

WTTP response

ction
Client read ‘W

HTTP URL: Uniform Resource Locator

http:// www.gvsu.edu /files/registrar/622GX/7155/ admission.pdf
http:// www.gvsu.edu /files/img/article/frontpag/ 5123FG73A.jpg

http:// www.gvsu.edu /pcec/advising/ index.html

protocol

(URL scheme) hostname path to resource

HTTP Messages: Request & Response

Demo: URL & Web Dev Tools

http://info.mysite.org /about/

GET /about HTTP/1.0
Host: info.mysite.org
Accept-Language: en-us

Notice the blank line after the
“Accept-Language” header Server

client (info.mysite.org)

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

<html>
<head><title>Welcome</title></head>
<body>
<h1>To my site</h1>
</body>
</html> 10

Weh Browser DevTools
(Network Tah)

http://info.cern.ch

o e @ n o e v
» a1l
No Throttling &
oth
Me... Domain tia Type Trans

GET # info.cer... BrowserTa... html 878

GET info.cer

Headers

200 (

HTTP/1.1
878 B (646 B size)

Response ders (232 B) Qm——

HTTP/1.1 200 0K

Date: Mon, 25 Jan 2021 23:19:31 GMT

Server: Apache

Last-Modified: Wed, 05 Feb 2014 16:00:31 GMT
ETag: "286-4flaadb3105c0"™

Accept-Ranges: bytes

Content-Length: 646

Connection: close

Content-Type: text/html

Request Headers (333 B) <mmmmm—

GET / HTTP/1.1
Host: info.cern.ch
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:84.0) Gecko/20100101 Fi
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp,*/*;qG=0
en-US,en;q=0.5
gzip, deflate
Connection: keep-alive
Upgrade-Insecure-Requests: 1

curl --verbose http://info.cern.ch

On Linux/05X/Windows 10 WSL

http://info.cern.ch

line

—

w N

Request/Response line required

Header1: value1
Header2: value2
.. more header lines here ...

N HeaderN: valueN

|:> Header lines (optional)

N+1

N+2
N+3

| One blank line H required

Message body (optional)

Data for POST requests, examples
o Encrypted userid/password
o Encrypted credit card details
o Content of uploaded file(s)
o etc.
Returned contents of server responses
o HTMLdoc
o Image data
o etc.

HTTP headers of interest to web developers

Header

Description

Example

Accept

Inform server media-type to respond

Accept: image/jpg

Accept-Language

Inform the server which languages the client is able to
understand

Accept-Language: en-US; en-UK

Content-Type

Media type of the returned content

Content-Type: plain/text

Content-Language

The languages of the content

Content-Language: en-US

Date Date and time of the message Date: Mon, 21 Aug 2017 18:14:36 GMT
ETag Identifier used by caching algorithms ETag: “"8a9-291e721905000”
Host Specify the domain name of the intended server (mainly Host: www.personal.me:5555

for Virtual Hosting)

HTTP 1.0 Commands (Request Methods)

o GET
POST More-frequently used

e HEADJ (like GET but the server responds only with header, no data)

Operation
Less-frequently used Create
Read
Update

Delete

HTTP Request
POST

GET

PUT

DELETE

POST: upload file to Bb

POST /path/to/your/course HTTP/1.0
Host: mybb.gvsu.edu

The text/binary contents of your

File to upload to Bb will be included

as attachments here

client

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

Additional message from server goes here

Server
(mybb.gvsu.edu)

HTTP Status Code

Status Code Description
1xx Informational messages
2xx Success messages
3xx Redirect message
4xx Error on the client’s behalf
5xx Error on the server’s behalf

Simple HTTP Server

// myFirstHTTPServer.ts
import { createServer, IncomingMessage, ServerResponse } from "http";

const myServer = createServer(
(req: IncomingMessage, res: ServerResponse) => {
res.write("<h1>Hello world</h1>");

) res.end(); # From your project
) npx ts-node myFirstServer.ts
myServer.listen(5000, () => { # Then from your browser
console.debug("Server is listening at port 5000"); http://localhost:5000

H;

Coding Demo:
Node)S: http server

HTTP Connections: Persistence

HTTP Client HTTP Server HTTP Client

Connect & seng request#1 Connect

Connect OK

Send response#1 & close
Send requesty1

Send response#l

Connect & Send request#2

Send response#Z & close

Send request#2

Close

HTTP 1.0: non-persistent HTTP 1.1: persistent

HTTP Server

Send response#2

HTTP 1.0

e One request per connection
(non-persistent)

e Cache control is timestamp based with .
one-second resolution (inaccurate)

e (Client cannot request a portion of a °
resource

e Responses are delivered in one big
chunk *

HTTP 1.1

N requests per connection (persistent)
Response can be delivered in chunk
Cache control is content based,
responses include entity tag (Etag),
similar to hash value

Clients can request partial content
o “Range:" header line in HTTP request

Responses may be delivered in many
small chunks

HTTPS

HTTP Secure
HTTP over TLS (Transport Layer Security)
HTTP over SSL (Secure Socket Layer)

e PKI (Public Key Infrastructure)

% private key

Encrypted Message (with publicsprivate key pair)

“Where’s Monkey Bar?’

« . o
Where’s Monkey Bar: “HSY8&$%"dygaKItf9)FDD”
e “HSY88&$%*dygqK Tt FI)FDD” s :
Sender

Recipient

Secure Message Exchange (over Persistent Connection)

HTTP Client HTTP Server
Server
ConneCt # > Private k
S;r\?ei “
Public key
Connect OK + Certificate (with public key)
4
Client Se i
.,"_(.8.. cret Key (encrypted using server public key) Client Secret key
(decrypted using
1!!—"8" server private key)

Encrypted HTTP request (using

client secret ke Request (decrypted using

common secret key)

; ient secret ke
Response (decrypted esponse (using chen/x)

Encrypted HTTP
using client secret key)

GET or POST over secure connections

OST /path/to/your/course HTTP/1.0
remote-serv.io

p
Host:

The text/binary contents of your
File to upload to Bb will be included

s attachments here

Server
remote-serv.io

client
Encrypted message <~
N
\
1

\
\
ETTP/l.O 200 OK J‘I

ontent-Type: textYhtml

ost: info.mysite.arg
A 4

[AdditionaL message from server goes here]

Uploading Sensitive Data over Encrypted Channel

Embed the sensitive data in a GET request query string

[J
GET /place/my/order/?creditcard=xxxxyyyyzzzzuuuu&zip=12345 HTTP/1.0

Host: www.amazon.co.uk

Embed the sensitive data in a POST message payload

POST /place/my/order HTTP/1.0
Host: www.amazon.co.uk

encrypted

creditcard=xxxxyyyyzzzzuuuu

zip=12345

N/

http://www.amazon.co.uk

Certificate and Certificate Authority (CA)

UsWASHINGTON priver LICENSE
s BASHFBE20TMD, ion

N wasame

<= WASHINGTON oenffiieeds,

couce DOE™HISRY oovoRw & m"“ o

g‘o E . TN s
!>::£;lj§§:5‘\’* s 04812003 * //m\\ %*,

0 Exp 04812011

Certificate: Proof of Your Identity Certificate Authority:
Trusted Organizations who issue certificates

Michigan IDs vs. Browser Certificates

Michigan IDs (Browser) Certificates
A formal proof of your identity A formal proof of the web server identity

Issued and signed by Secretary of State Issued and signed by Certificate Authority

Provide other proof of identity (birth Certificate Signing Request: server request
certificate, passport) to apply for Michigan | a CA to sign the server’s identity (public
ID to the SoS key) using the CA key

The SoS is a trusted government body Trusted CAs

Browser Demo: Certificates
(1) From HTTPS connection
(2) From Settings => View Certificates

Trusted Certificate Authorities

<« c o © Fireror | aboutpreerer i 7 ymmoodvy &

Screenshot of FireFox.

Step 2: Filter for "certificates™ e
¥ Gen rch Resul cun
Other browsers follow @ vor —
. ey O
similar steps. Q sen Loy
& riv. Step 3: View Certificates
2 sn
Step 1: Options, ~ =
- i: ‘‘‘‘‘‘‘‘
Q rin
e

ooooo

Obtaining Web Certificates (“Web ID Cards”)

Certificate

4
* 0

Proof of identity 'Certificate

(passport, GOV ids, birth (signed by CA)
certificates)

Private+Public Certificate Authority Web Certificate
Kev Pair (CA) ————> (signed by CA's

y Known to Browsers private key)

Self-Signed Certificates (for Development)

c,erﬁficafe

%

Proof of identity (Si(é(:]:c;ﬁg;tgA)

Certificate (Signing)
Authority

Private+Public
Key Pair Unknown to browsers Web Certificate

(signed by CA's
private key)

Encryption - how!

|. Computers agree on how to encrypt

-

Key Ciphear Hash
RSA RCA HMAC:MDS

Diffie-Hellman Triple DES HMAC-SHA
DSA AES

Varsion 3)
Random number 29873456234234...

-

Key Cepher : ‘

RSA RC4 HMAC-MDS
Diffie-Hellman Tripio DES

DSA AES

HTTP /11

HTTP messages encoded in text format
Require multiple connections to achieve
concurrency

Uncompressed response headers

No resource prioritization

HTTP /2

e HTTP messages encoded in binary

format
o Message = request or response

e Multiple concurrent channels on a single
connection
Compressed response headers

e Resource prioritization (important
requests complete more quickly)

http://www.youtube.com/watch?v=iQsKdtjwtYI

