
HTTP

1

HTTP

● HyperText Transfer Protocol
● Invented by Tim Berners Lee @ CERN
● A protocol for delivering resources over the web
● TCP/IP connections, default (server) port 80
● HTTP client & HTTP server

2

Other network Transfer Protocols
● FTP: File Transfer Protocol
● FTPS: Secure FTP
● SMTP: Simple Message Transfer Protocol
● NTP: Network Time Protocol

3

Why learn the details of HTTP?

(Later) How to programmatically initiate
HTTP requests from your program

4

Web Client/Server Architecture

5

(5) Run
Code

(2) Run
Code

(3) Send “contents” (HTML + CSS + JS & other data)

(1) Send “user input”

(4) Present “contents”

(6) Handle user input

HTTP Communication Model
HTTP Client

HTTP Client

HTTP Client

.

.

.

HTTP Server

Clients initiate the connection!!!
6

request

request

request

response

response

response

Transaction Timeline (TCP Sockets)
HTTP Client HTTP Server

HTTP request

HTTP response

TCP Connect

Connect OK

Close Connection

Client write

Client read

Server read

Server write

7

HTTP URL: Uniform Resource Locator

8

http:// www.gvsu.edu /pcec/advising/ index.html

protocol
(URL scheme) hostname path to resource

http:// www.gvsu.edu /files/img/article/frontpag/ 5123FG73A.jpg

http:// www.gvsu.edu /files/registrar/622GX/7155/ admission.pdf

HTTP Messages: Request & Response

Demo: URL & Web Dev Tools

9

http://info.mysite.org/about/
GET /about HTTP/1.0
Host: info.mysite.org
Accept-Language: en-us

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

<html>
 <head><title>Welcome</title></head>
 <body>
 <h1>To my site</h1>
 </body>
</html>

client Server
(info.mysite.org)

Notice the blank line after the
“Accept-Language” header

10

Web Browser DevTools
(Network Tab)

11

http://info.cern.ch

curl --verbose http://info.cern.ch

(On Linux/OSX/Windows 10 WSL)

12

http://info.cern.ch

Request/Response line

Header1: value1
Header2: value2
… more header lines here …
HeaderN: valueN

message body
(plain text or binary)

One blank line

13

1

2
3

N

N+1

N+2
N+3

required

Header lines (optional)

required

Message body (optional)
● Data for POST requests, examples

○ Encrypted userid/password
○ Encrypted credit card details
○ Content of uploaded file(s)
○ etc.

● Returned contents of server responses
○ HTML doc
○ Image data
○ etc.

line

HTTP headers of interest to web developers
Header Description Example

Accept Inform server media-type to respond Accept: image/jpg

Accept-Language Inform the server which languages the client is able to
understand

Accept-Language: en-US; en-UK

Content-Type Media type of the returned content Content-Type: plain/text

Content-Language The languages of the content Content-Language: en-US

Date Date and time of the message Date: Mon, 21 Aug 2017 18:14:36 GMT

ETag Identifier used by caching algorithms ETag: “"8a9-291e721905000”

Host Specify the domain name of the intended server (mainly
for Virtual Hosting)

Host: www.personal.me:5555

14

HTTP 1.0 Commands (Request Methods)
● GET
● POST
● HEAD (like GET but the server responds only with header, no data)

● PUT
● DELETE
● OPTIONS

15

Less-frequently used

More-frequently used

Operation HTTP Request

Create POST

Read GET

Update PUT

Delete DELETE

POST: upload file to Bb
POST /path/to/your/course HTTP/1.0
Host: mybb.gvsu.edu

The text/binary contents of your
File to upload to Bb will be included
as attachments here

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

Additional message from server goes here

client Server
(mybb.gvsu.edu)

16

HTTP Status Code

Status Code Description

1xx Informational messages

2xx Success messages

3xx Redirect message

4xx Error on the client’s behalf

5xx Error on the server’s behalf

17

Simple HTTP Server

18

// myFirstHTTPServer.ts
import { createServer, IncomingMessage, ServerResponse } from "http";

const myServer = createServer(
 (req: IncomingMessage, res: ServerResponse) => {
 res.write("<h1>Hello world</h1>");
 res.end();
 }
);

myServer.listen(5000, () => {
 console.debug("Server is listening at port 5000");
});

From your project
npx ts-node myFirstServer.ts

Then from your browser
http://localhost:5000

Coding Demo:
NodeJS: http server

19

HTTP Connections: Persistence
HTTP Client HTTP Server

Connect & Send request#1

Send response#1 & close

20

Connect & Send request#2

Send response#2 & close

HTTP Client HTTP Server

Connect

Send response#1

Send request#1

Connect OK

Send response#2

Send request#2

Close

HTTP 1.0: non-persistent HTTP 1.1: persistent

HTTP 1.0 HTTP 1.1
● One request per connection

(non-persistent)
● Cache control is timestamp based with

one-second resolution (inaccurate)

● Client cannot request a portion of a
resource

● Responses are delivered in one big
chunk

● N requests per connection (persistent)
● Response can be delivered in chunk
● Cache control is content based,

responses include entity tag (Etag),
similar to hash value

● Clients can request partial content
○ “Range:” header line in HTTP request

● Responses may be delivered in many
small chunks

21

HTTPS
● HTTP Secure
● HTTP over TLS (Transport Layer Security)
● HTTP over SSL (Secure Socket Layer)

● PKI (Public Key Infrastructure)

22

private key

public key

Encrypted Message (with public+private key pair)

23

Sender Recipient

“Where’s Monkey Bar?”

“HSY&&$%^dygqKJtf9)FDD”
“HSY&&$%^dygqKJtf9)FDD”

“Where’s Monkey Bar?”

Secure Message Exchange (over Persistent Connection)
HTTP Client HTTP Server

Encrypted HTTP response (using client secret key)

Connect

Connect OK + Certificate (with public key)

24

Client Secret Key (encrypted using server public key)

Encrypted HTTP request (using client secret key)

Server
Public key

Server
Private key

Client Secret key
(decrypted using
server private key)

Request (decrypted using
common secret key)

Response (decrypted
using client secret key)

GET or POST over secure connections
POST /path/to/your/course HTTP/1.0
Host: remote-serv.io

The text/binary contents of your
File to upload to Bb will be included
as attachments here

HTTP/1.0 200 OK
Content-Type: text/html
Host: info.mysite.org

Additional message from server goes here

client Server
remote-serv.io

25

Encrypted message

Unencrypted text

Uploading Sensitive Data over Encrypted Channel

26

● Embed the sensitive data in a GET request query string

● Embed the sensitive data in a POST message payload

GET /place/my/order/?creditcard=xxxxyyyyzzzzuuuu&zip=12345 HTTP/1.0
Host: www.amazon.co.uk

POST /place/my/order HTTP/1.0
Host: www.amazon.co.uk

creditcard=xxxxyyyyzzzzuuuu
zip=12345

unencrypted

encrypted

unencrypted

http://www.amazon.co.uk

27

Certificate and Certificate Authority (CA)

Certificate: Proof of Your Identity Certificate Authority:
Trusted Organizations who issue certificates

Michigan IDs vs. Browser Certificates

28

Michigan IDs (Browser) Certificates

A formal proof of your identity A formal proof of the web server identity

Issued and signed by Secretary of State Issued and signed by Certificate Authority

Provide other proof of identity (birth
certificate, passport) to apply for Michigan
ID to the SoS

Certificate Signing Request: server request
a CA to sign the server’s identity (public
key) using the CA key

The SoS is a trusted government body Trusted CAs

Browser Demo: Certificates
(1) From HTTPS connection

(2) From Settings => View Certificates

29

Trusted Certificate Authorities

30

Screenshot of FireFox.

Other browsers follow
similar steps.

Obtaining Web Certificates (“Web ID Cards”)

31

Proof of identity
(passport, GOV ids, birth

certificates)

Certificate Authority
(CA)

Known to Browsers

Certificate
(signed by CA)

Private+Public
Key Pair

Web Certificate
(signed by CA’s

private key)

Self-Signed Certificates (for Development)

32

Proof of identity

Certificate (Signing)
Authority

Unknown to browsers

Certificate
(signed by CA)

Private+Public
Key Pair Web Certificate

(signed by CA’s
private key)

YOURSELF

34

HTTP/1.1 HTTP/2
● HTTP messages encoded in text format
● Require multiple connections to achieve

concurrency
● Uncompressed response headers
● No resource prioritization

36

● HTTP messages encoded in binary
format

○ Message = request or response
● Multiple concurrent channels on a single

connection
● Compressed response headers
● Resource prioritization (important

requests complete more quickly)

http://www.youtube.com/watch?v=iQsKdtjwtYI

