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Course Logistics
● No assigned textbook

○ most materials about web development is available online

● Bb and the instructor’s teaching web site
○ Office hours (via Calendly)
○ Weekly Schedule
○ Assignments

● Zoom session (in case of snow days)
○ Login via https://gvsu-edu.zoom.us
○ Use the link and password posted on Bb
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Programming Tools
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Debugger (in browser)
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Visual Studio Code



Prereqs
● Fluent in Java (or other OO Languages)

○ You should be able to solve most problems at codingbat.com in a couple of minutes. If 
you struggle in solving these problems, then you are not ready to take this course

● Self Learner

○ Proficient in high-level programming concepts, and able to teach yourself the basics of 
other C-like languages (Java|Type)Script

● Good understanding of OO techniques: inheritance, methods, interface, ...
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http://codingbat.com


Expected Java Fluency
● Accessing object properties (without using a “getter” functions)
● Using loops on arrays of objects
● Writing own functions/methods
● Passing arguments into functions
● Function return value

○ Returning “result” from a function
○ Using a function “result”
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Warming Up
● Brief Instructor introduction
● Individual introduction

○ Name and what do you want to be called
○ Background experience in web work
○ Specific topics you seek to learn from this class
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What is
What is Web Programming?

8

Group Discussions
Unique characteristics of web apps?



Web Apps ≠ Web Pages
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CS 371 (this course)
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Static Web Pages Web Apps

Web Pages vs.    Web Apps

Web 1.0: read-only web Web 2.0: dynamic read-write web



Desktop Apps
vs.

Web Apps
vs.

Mobile Apps
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Traditional Client/Server architecture
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Data

Data



Web Apps: Client/Server architecture
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Data & Code

Data & Code



Roles of Web Browsers in Web apps
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● Present data
○ HTML + Text + Audio + Video + Image
○ Content animation (CSS)
○ 2D Graphics or 3D Graphics (WebGL) on <canvas>

● Receiver user input
○ Textual input
○ Mouse clicks / screen taps
○ Screen orientation (gyroscope on smartphones) ⇒ WebVR

● Run code
○ JavaScript (engines: Google V8, Mozilla SpiderMonkey, Apple JSCore, Microsoft Chakra)
○ Web Assembly (proposal since 2017)



Web Client/Server Architecture
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(5) Run 
Code

(2) Run 
Code

(3) Send “contents” (HTML + CSS + JS & other data)

(1) Send “user input”

(4) Present “contents”

(6 ) Handle user input



Client-Side vs. / Server-Side Programming
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Web 1.0: Static web pages
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Run 
Code

Run App
Codedata only

user inputs

Initial HTML + JS + CSS fetch

static web pages
hosting services



Web 2.0: Client/Server (dynamic R/W web apps)
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app hosting platforms



Web 3.0: Peer-to-Peer (decentralized providers)
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Web App 2.0 ⇒ Web DApps 3.0
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Interested in building dApps?

Try hardhat.org and Ethereum Scaffold
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https://hardhat.org
https://github.com/scaffold-eth/scaffold-eth
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Web 2.0 (centralized) Web 3.0 (decentralized)

Computing Engine AWS, Heroku, Netlify Solidity (smart contracts),
App containers (“Docker”)

Data Storage Amazon S3, Azure, Google Cloud IPFS + Blockchain technology

Data Source 3rd party API same 3rd party API

Monetization Advertising NFTs (proof of digital ownership)

Payments PayPal, Visa, … Cryptocurrency

Block chain of transactions
Block chain of data

Block chain of 
apps (code) & services
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