
CS371
Web Application

Development
Hans Dulimarta

1

Course Logistics
● No assigned textbook

○ most materials about web development is available online

● Bb and the instructor’s teaching web site
○ Office hours (via Calendly)
○ Weekly Schedule
○ Assignments

● Zoom session (in case of snow days)
○ Login via https://gvsu-edu.zoom.us
○ Use the link and password posted on Bb

2

Programming Tools

3

Debugger (in browser)

4

Visual Studio Code

Prereqs
● Fluent in Java (or other OO Languages)

○ You should be able to solve most problems at codingbat.com in a couple of minutes. If
you struggle in solving these problems, then you are not ready to take this course

● Self Learner

○ Proficient in high-level programming concepts, and able to teach yourself the basics of
other C-like languages (Java|Type)Script

● Good understanding of OO techniques: inheritance, methods, interface, ...

5

http://codingbat.com

Expected Java Fluency
● Accessing object properties (without using a “getter” functions)
● Using loops on arrays of objects
● Writing own functions/methods
● Passing arguments into functions
● Function return value

○ Returning “result” from a function
○ Using a function “result”

6

Warming Up
● Brief Instructor introduction
● Individual introduction

○ Name and what do you want to be called
○ Background experience in web work
○ Specific topics you seek to learn from this class

7

What is
What is Web Programming?

8

Group Discussions
Unique characteristics of web apps?

Web Apps ≠ Web Pages

9

CS 371 (this course)

10

JS

HTML

CSS

JS

HTML
+

Components

CSS

Static Web Pages Web Apps

Web Pages vs. Web Apps

Web 1.0: read-only web Web 2.0: dynamic read-write web

Desktop Apps
vs.

Web Apps
vs.

Mobile Apps
11

Traditional Client/Server architecture

12

Data

Data

Web Apps: Client/Server architecture

13

Data & Code

Data & Code

Roles of Web Browsers in Web apps

14

● Present data
○ HTML + Text + Audio + Video + Image
○ Content animation (CSS)
○ 2D Graphics or 3D Graphics (WebGL) on <canvas>

● Receiver user input
○ Textual input
○ Mouse clicks / screen taps
○ Screen orientation (gyroscope on smartphones) ⇒ WebVR

● Run code
○ JavaScript (engines: Google V8, Mozilla SpiderMonkey, Apple JSCore, Microsoft Chakra)
○ Web Assembly (proposal since 2017)

Web Client/Server Architecture

15

(5) Run
Code

(2) Run
Code

(3) Send “contents” (HTML + CSS + JS & other data)

(1) Send “user input”

(4) Present “contents”

(6) Handle user input

Client-Side vs. / Server-Side Programming

16

Run
Code

Run Code
data only

user inputs

Run Code Run
CodeHTML/CSS/JS + data

user inputs

Initial HTML + JS + CSS fetch

Initial HTML + JS + CSS fetch

Web 1.0: Static web pages

17

Run
Code

Run App
Codedata only

user inputs

Initial HTML + JS + CSS fetch

static web pages
hosting services

Web 2.0: Client/Server (dynamic R/W web apps)

18

Run
Code

Run Code
data only

user inputs

Initial HTML + JS + CSS fetch

Centralized
app hosting platforms

Web 3.0: Peer-to-Peer (decentralized providers)

19

Run
Code

data only

user inputs

Apps (containerized)
App/service provider(s)

“content” provider(s)

data only
user inputs

Ve
ri

fie
d

by
 b

lo
ck

ch
ai

n
te

ch
no

lo
gy

Web App 2.0 ⇒ Web DApps 3.0

20

Interested in building dApps?

Try hardhat.org and Ethereum Scaffold

21

https://hardhat.org
https://github.com/scaffold-eth/scaffold-eth

22

Web 2.0 (centralized) Web 3.0 (decentralized)

Computing Engine AWS, Heroku, Netlify Solidity (smart contracts),
App containers (“Docker”)

Data Storage Amazon S3, Azure, Google Cloud IPFS + Blockchain technology

Data Source 3rd party API same 3rd party API

Monetization Advertising NFTs (proof of digital ownership)

Payments PayPal, Visa, … Cryptocurrency

Block chain of transactions
Block chain of data

Block chain of
apps (code) & services

23

