
Kotlin Features for
Android Development

1

Topics
● Delegation in Kotlin

○ Built-in delegates: lazy
● Kotlin Coroutines
● Advanced [Kotlin Flow: SharedFlow, StateFlow]

2

Kotlin Delegation

6

7

Delegation in general

can you do this work for me?

OK, here is the result

● Object A delegates some of its work to Object B
● Work supposed to be rendered by A is actually completed by B

Object A

thisWork()

Object B
(delegate of A)

performWork()do this work

8

Delegation in iOS

UITableView

how many total rows?

73

MyViewController
(delegate of UITableView)

what’s the details of row 51?

“Spider Man”, [2002, 2007]

row 17 was selected. What do you do?

MyViewController is doing work on behalf of the tableview

9

Delegation in Kotlin
● Three techniques for enhancing feature of a class X

○ Using inheritance/interface: requires X to implement specific functions
○ Using composition: add a subobject in X that implements those functions
○ Using Kotlin delegation (a mix of inheritance & composition)

● Kotlin provides native support for delegation via the by keyword
● Two kinds of delegation

○ Class delegation: delegate the implementation of an interface from X to an object Y
○ Property delegation: use an object Y to provide the value of a property of X

10

Why Delegation: Motivation

interface VisaPayment {
 fun pay(cardNumber: String, amount: Float)
}

11

How to enhance a class to enable credit card payment?

Solution #1: Enhancement by Inheritance

interface VisaPayment {
 fun pay(cardNumber: String, amount: Float)
}

// Version 1: Traditional solution using inheritance
class MyAppV1: VisaPayment {
 override fun pay(cardNumber: String, amount: Float) {
 // your own code here
 }
}

fun main() {
 val app = MyAppV1()
 app.pay(“XXXX YYYY ZZZZ WWWW”, 12.50f)
}

12

Enhancement Via Composition

● ClassA declares a subobject of type ClassB
● Work supposed to be rendered by A is actually completed by

invoking a method of ClassB

ClassA

val helper = ClassB()

thisWork() {
 helper.performWork()
}

ClassB

performWork()
do this work

13

Object Composition (Refresher)

// Car.java
class Car {
 CombustionEngine engine;
 AutomaticTransmission transmission;

 void prepareForDrive() {
 engine.start()
 transmission.shiftTo(Gear.DRIVE)
 }
}

// Car.kt
class Car (val engine: CombustionEngine,
 val transmission: AutomaticTransmission) {

 fun prepareForDrive(): Unit {
 engine.start()
 transmission.shiftTo(Gear.DRIVE)
 }
}

A car is composed of an engine, a transmission box, and many more...

14

Solution #2: Enhancement by Composition
interface VisaPayment {
 fun pay(cardNumber: String, amount: Float)
}

// Version 2: Solution using object Composition
class MyAppV2 (val payAgent: VisaPayment) {
 fun doPayment(cardNumber: String, amount: Float) {
 payAgent.pay(cardNumber, amount)
 }
}

fun main() {
 val service = PayPal()
 val app = MyAppV2(service)
 app.doPayment(“XXXX YYYY ZZZZ WWWW”, 12.50f)
}

class PayPal: VisaPayment {
 fun pay(cardNumber: String, amount: Float) {
 // code implemented by a third-party library
 }
}

15

Solution #3: Kotlin Class Delegation
interface VisaPayment {
 fun pay(cardNumber: String, amount: Float)
}

class MyAppV3 (val payHelper: VisaPayment): VisaPayment by payHelper {
 // No “pay” function required here
}

fun main() {
 val app = MyAppV3(PayPal())
 // this invokes the pay method provided by PayPal
 app.pay(“XXXX YYYY ZZZZ WWWW”, 12.50f)
}

class PayPal: VisaPayment {
 fun pay(cardNumber: String, amount: Float) {
 // code implemented by a third-party library
 }
}

Playground

class MyAppV4 : VisaPayment by PayPal()

fun main() {
 val app = MyAppV4()
 app.pay(“XXXX YYYY ZZZZ WWWW”, 12.50f)
}

name payService
is insignificant

16

Summary of Kotlin Delegation

17

Kotlin Delegation enables “injection” of a function (pay)
provided by a third-party (PayPal) into your own code

class MyApp : VisaPayment by PayPal()

fun main() {
 val app = MyApp()
 app.pay(“XXXX YYYY ZZZZ WWWW”, 12.50f)
}

https://pl.kotl.in/6QjTgyMyT

Property Delegation

18

Property: Getter & Setter
● Properties require getter and setter
● When the actual implementation of a

property is delegated to an external
object/class, the class must provide
getter and setter as well

○ Internally, it uses Kotlin function overloading

// Person.java
class Person {
 private String name;

 public String getName() {
 return this.name;
 }

 public void setName(n:String) {
 this.name = n;
 }
}

// Person.kt
data class Person (val name:String)

19

Property Delegation

class ProperName {
 private var myName = ""
 operator fun getValue(p: Person, z: KProperty<*>): String {
 // perform work to return the value of the property
 }

 operator fun setValue(p: Person, z: KProperty<*>, newValue:String) {
 // perform some work to return the value of the property
 }
}

class Person {
 var name:String by ProperName()
} Online Playground

“Borrow” setter and getter defined by an external class

20

Summary (of Kotlin Delegation)

21

● A new technique for “borrowing” functions/methods from another class to
your class

○ Without using class inheritance
○ Without using object composition

● Functions from the other class are directly “injected” into your class, making
them to appear as if they are defined internally in your class

● Property delegation is a special case of borrowing getter and setter (from an
external provided) for selected variable(s) in your class

https://pl.kotl.in/1O4OhHlkU

Kotlin Delegation

22

// Class Delegation
class MyClass : NameOfInterface by HisClassProvidingNewFunctions() {

}

// Property Delegation
class MyClass {
 var abc: Int by SetterAndGetterForInt()
}

// Class Inheritance
class MyClass : NameOfInterface {
 // This class must implement the interface
}

Kotlin Coroutines
(Async + Concurrent

Programs)

23

24

Topics
● Function calls: synchronous vs. asynchronous
● Concurrent Execution with Threads
● Concurrent Execution with Coroutines
● Kotlin Coroutines

○ Suspending Functions
○ Coroutine Builder Functions
○ Structured Concurrency
○ Dispatchers
○ Coroutine Context

● Prerequisites: (trailing) lambdas

25

http://www.youtube.com/watch?v=jT2gHPQ4Z1Q

Why Need Concurrency?
● Interactive apps (such as Android apps) rely on the existence of the UI

thread to update the UI screen
● Sometimes your app needs to perform “heavy” work

○ Reading/Writing Database
○ Obtaining data from remote servers (weather, stock prices, event calendars,)

● Running these tasks on the UI thread will degrade app responsiveness
● Need different thread(s) to execute “heavy” work, but managing threads

require extra overhead on the OS

26

Concurrent vs. Asynchronous

● Co-occurrence
● Two (or more) actions are happening

about the same time

27

● Not synchronous, unsynchronized
● Literal meaning: two (or more) actions

which are not happening simultaneously
● In the context of programming: completion

mode of function calls
○ Synchronous function calls
○ Asynchronous function calls

● Asynchronous function call implies
concurrency

Asynchronous Actions?

28

Text me (later) when
you get home tonight!

Ok! I will

Bob Charlie

Bob: “Text Me”

Charlie: Ok Charlie drives home C: “I’m Home”

B: “👍👍👍”What should Bob do here?

Sync. vs. Async. Function Calls

29

Bob: “Text Me”

Charlie: Ok Charlie drives home C: “I’m Home”

B: “👍👍👍”Bob sits idle, doing nothing, but waiting for incoming text

Bob sends Charlie home synchronously (NO concurrency)

Bob: “Text Me”

Charlie: Ok Charlie drives home C: “I’m Home”

B: “👍👍👍”Bob works on his homework

Bob sends Charlie home asynchronously

Concurrency ⇏ Parallelism
Parallelism ⇒ Concurrency
Asynchronous ⇒ Concurrency

30

Concurrent execution

Sync vs. Async Function Calls

Caller invokes Caller gets result synchronously

Callee works and returns

Caller do more work

Caller invokes Caller gets result asynchronously

Callee works and returns

Caller performs other work yet more

31

 Caller idle waiting for

Ordinary Functions

32

fun doSomeWork(): Unit {
 /* Code block A */
 callToAnotherFunc(/* args */)
 /* Code block B */
}

Run Block A

Your program can’t do other work
(stuck inside doSomeWork)

Run Block BInitiate
fn call

fn call
completion

Suspend(able) Functions

33

suspend fun doSomeWork(): Unit {
 /* Code block A */
 callToSuspendFunc(/* args */) // => “breakpoint”
 /* Code block B */
}

Run Block A

Your program does other
work available

Run Block BInitiate
fn call

fn call
completion

doSomeWork suspended doSomeWork resumed

Async Functions in Other Languages
// Kotlin
suspend fun genPassword(len: Int): String {
 // generate password of given length
}

suspend fun resetMyPassword() {
 val pw = genPassword(12)
 println(“Your password is $pw”)
}

Python
import asyncio
async def genPassword(len):
 # generate password of given length

async def resetMyPassword():
 pw = await genPassword(12)
 print(f`Your password is {pw}`)

In Kotlin:
A suspending function can only be called from
another suspending function or within a co-routine
scope

Online Playground
36

Convenient Features Provided by Coroutines
● An automated mechanism (at the language level, not at the OS level) to

suspend and resume function executions
● Write an asynchronous program (almost) in the same way as a synchronous

(sequential) order

37

https://pl.kotl.in/tyAoZDYMB

suspend(ing|able) Functions
● Kotlin functions declared with the suspend keyword
● Suspendable functions have “breakpoints” (borrowed from debugging

terms) in its function body
○ These breakpoints are calls to other suspendable functions
○ At runtime a suspendable function executes until the next “breakpoint” and gets suspended
○ Function execution resumes when the the (suspend) callee completes its work

● Suspendable functions are NOT a coroutine
● Suspendable functions are a function that can suspend/resume coroutines

38

Kotlin Coroutines
● Coroutines are a suspendable unit of (code) execution
● In Operating Systems

○ Threads are a lightweight process (LWP)
○ One or more threads may run concurrently within a process

● In Kotlin
○ Coroutines are a lightweight thread
○ One or more coroutines may run concurrently within a thread

Rope ⇒ Strands ⇒ Yarns
Process ⇒ Threads ⇒ Coroutines

39

Threads vs. Coroutines

40

● Threads cannot be suspended
● Threads can only be blocked or unblocked
● When a thread is blocked

○ its execution context is saved by the OS
○ the thread cannot be used to execute other

work

● Coroutines executes within a thread
● Coroutines can be suspended and

resumed
● To suspend a coroutine, only references to

local variables and the suspension
location need to be saved as an object
(does not require OS assistance)

○ This object is the “Continuation” object
● When a coroutine is suspended, its “host”

thread can be used to execute other work
or coroutine

Threads ⇒ Lightweight Processes

Coroutines ⇒ Lightweight Threads

42

How lightweight are Kotlin Coroutines

43

● Threads require OS to allocate (& manage) execution context on stack
○ Execution of Coroutines are managed at the language level (using a simple Continuation

object)
● When execution of a thread switches to another thread, OS must save and

load execution context of each thread
○ Switching between coroutines does not require OS interception

Coroutine: Builder & Runner

44

Coroutine Building Blocks: suspend functions
// Kotlin
suspend fun genPassword(len: Int): String {
 // generate password of given length
}

suspend fun resetMyPassword() {
 val pw = genPassword(12)
 println(“Your password is $pw”)
}

45

Coroutine Runner Functions
Suspending functions can only be called inside another suspending function

● Q: How to invoke the first suspending function?
● A: Use one of the following builder/runner functions

○ runBlocking(): is a non-suspending function that creates a coroutine scope that blocks
until all the (“child”) coroutines complete their execution

○ coroutineScope(): similar to runBlocking() but is a suspending function itself, so when any
of the (“child”) coroutines is suspended, the scope is also suspended

○ launch(): starts a new coroutine concurrently with the rest of the code
○ async(): similar to launch() but the lambda block may return a result to the thread that

launched it

46

Coroutine Builders in Kotlin Stdlib

47

fun <R> runBlocking (context: CoroutineContext = EmptyCoroutineContext,
 block: suspend CoroutineScope.() -> R): R

suspend fun <R> coroutineScope (block: suspend CoroutineScope.() -> R): R

fun CoroutineScope.launch(context: CoroutineContext = EmptyCoroutineContext,
 start: CoroutineStart = CoroutineStart.DEFAULT,
 block: suspend CoroutineScope.() -> Unit): Job

fun <R> CoroutineScope.async(context: CoroutineContext = EmptyCoroutineContext,
 start: CoroutineStart = CoroutineStart.DEFAULT,
 block: suspend CoroutineScope.() -> R): Deferred<R>

All these functions are declared to accept trailing lambdas

CoRoutine Builders (Simplified)

48

// runBlocking can be invoked from an ordinary function
 fun <R> runBlocking (block: suspend CoroutineScope.() -> R): R

// coroutineScope must be invoked from a suspending function
suspend fun <R> coroutineScope (block: suspend CoroutineScope.() -> R): R

// Both functions below are invoked inside a CoroutineScope
fun CoroutineScope.launch (block: suspend CoroutineScope.() -> Unit): Job
fun <R> CoroutineScope.async(block: suspend CoroutineScope.() -> R): Deferred<R>

● Both runBlocking and coroutineScope returns only when all their child coroutines are complete
● When one of its child coroutines is suspended the thread hosting runBlocking is blocked
● When one of its child coroutines is suspended the thread hosting coroutineScope can be reused

to execute other work
● Both launch and async create a new coroutine, and they must be used inside a CouroutineScope

such as runBlocking or coroutineScope

Runtime Behavior
(of coroutine builders)

50

runBlocking vs. coroutineScope

51

● It is an ordinary function
● If a child statement is suspended, the

(“parent”) thread running runBlocking
stays attached to it (i.e. the thread is
blocked from doing other work)

● It is a suspending/suspendable function
● If a child statement is suspended, the

(“parent”) thread running coroutineScope
becomes available to do other work

● Statements (“children”) inside them execute sequentially, possible suspended and resumed
● They return (finish executing) when the last statement complete
● The lifetime of these children is (collectively) managed by a CoroutineScope object

launch vs. async

52

● When the coroutine finish executing, it
returns a Unit (“void”)

● When the coroutine finish executing, it
returns a result of type T wrapped as
Deferred<T> which can be unwrapped by
calling .await

● They are extension functions on the CoroutineScope class
● They can be invoked inside a runBlocking or coroutineScope function (i.e. as a child of

runBlocking/coroutineScope parent)
● They create a new coroutine (a Job) that executes concurrently with other siblings of the same

parent
○ The statements inside this new coroutine execute sequentially

Some Terminologies

55

Important reminder: a coroutine is just a suspendable function

● CoroutineScope
○ A mechanism to manage the execution of a group of coroutines
○ The total lifetime of the (parent) scope is the lifetime of all the coroutines (combined)

● Job: is a handle (“reference”) to a coroutine
○ Important for cancellation and exception handling

● Dispatchers
○ In OS a function needs a “playground” (i.e. thread) to run
○ Likewise, a coroutine must be dispatched to a thread to run

● CoroutineContext: an object that maintains the execution context of a
coroutine

Lambda Syntax Refresher

56

// repeat() defined in Kotlin stdlib with a trailing lambda
fun repeat(times: Int, action: (Int) -> Unit) {
 for (index in 0 until times) {
 action(index)
 }
}

// Use it without lambda
fun someWork(arg: Int) {
 println (“Hello $arg”)
}

fun main() {
 repeat (100, ::someWork)
}

// Use it with lambda
// inside parentheses

fun main() {
 repeat (100, {
 println(“Hello $it”)
 })
}

// Use it with lambda
// Easier to read

fun main() {
 repeat (100) {
 println(“Hello $it”)
 }
}

Coroutine Builders: Initiate a Coroutine
fun main() {
 runBlocking {
 /* Code A */
 /* Code B */
 }
 /* Code C */
}

Code A Code B

Code C

fun main() {
 runBlocking {
 launch { /* Code A */ }
 launch { /* Code B */ }
 }
 /* Code C */
}

Code A

Code C

Code B

Coroutine #1

main thread

Coroutine #1

Coroutine #2

main thread

In both scenarios, Code C (NOT a coroutine) runs only after
runBlocking() completed; all the coroutines also run under the main
threadOnline Playground

57

https://pl.kotl.in/BMt4e0au-

Which Kind of Date Do You Prefer?

58

runBlocking {
 launch {
 // eat the food (15 mins)
 }
 launch {
 // chat with your date (30 mins)
 }
}

// check your TikTok (10 mins)

runBlocking {
 launch {
 // eat the food (15 mins)
 }
 launch {
 // chat with your date (30 mins)
 }
 launch {
 // check your TikTok (10 mins)
 }
}

Total time = _________ Total time = _________

Coroutines must run
within a thread

59

Coroutine Dispatchers
● Air Traffic Controller assigns airplanes to

runways for take-off or landing
● Coroutine Dispatchers let you choose

which thread to run a coroutine
○ .Main: for UI/Non-blocking tasks
○ .IO: optimized for doing I/O intensive tasks

(disk or network)
○ .Default: for CPU intensive tasks
○ Thread pools created by

newSingleThreadContext()

Coroutine (“Airplane”)

Thread (“Runway”)

60

runBlocking {
 launch {
 // These two functions begin on the current thread
 someFunction1()
 someFunction2()
 }
 launch(Dispatchers.IO) {
 // The functions in this co-routine begin on the IO thread
 someFunction3()
 }
 launch(newSingleThreadContext(“Yup!”)) {
 // The functions in this co-routine begin on a newly created thread
 someFunction4()
 }
}

Launch Coroutines on a specific Thread

61

Kotlin Structured Concurrency
● Execution scopes created using runBlocking() or coroutineScope()

automatically manage their children suspension and completion
● This execution scope is syntactically (and semantically) inferred from the

block scope { /* lambda here */ } (i.e. pair of curly braces)
● Calls to runBlocking(), coroutineScope(), launch(), and async() can be

nested within each other
○ The nesting structure also indicates parent/child relationships among the couroutines

62

Kotlin Structured Concurrency
runBlocking {
 launch {
 coroutineScope {
 launch {
 // Code 1a
 // Code 1b
 }
 launch {
 // Code 2
 }
 // Code 3
 }
 // Code 4
 }
 launch {
 // Code 5
 }
}
// Code 6

Code 1a

Code 2

Code 3

Code 4

Code 5

Code 6
(not a coroutine)

Code 1b

63

Job/Coroutine Parent-Child Hierarchy
runBlocking {
 launch {
 coroutineScope {
 launch {
 // Code 1a
 // Code 1b
 }
 launch {
 // Code 2
 }
 // Code 3
 }
 // Code 4
 }
 launch {
 // Code 5
 }
}
// Code 6

Code 1 Code 2 Code 3

Code 4

Code 5

Code 6
(Not a coroutine)

64

withContext(): Switch dispatcher
runBlocking {
 launch(Dispatcher.IO) {
 // Code 1
 launch(Dispatcher.Main) {
 // Code 2
 }
 // Code 3
 }
}

runBlocking {
 launch(Dispatcher.IO) {
 // Code 1
 withContext(Dispatcher.Main) {
 // Code 2
 }
 // Code 3
 }
}

Two coroutines created
● Coroutine #1 executes Code 1 and Code 3 on the IO

thread
● Coroutine #2 executes Code 2 on the Main thread

Only one coroutine created
● Code 1 and Code 3 runs on the IO thread
● Code 2 runs on the Main thread

Practical use case:
● Code 1 makes a network request to fetch data
● Code 2 uses the data to update the UI

65

Cooperative Coroutines

67

// Non-cooperative coroutine
val poorJob = runBlocking {
 var k = 0
 while (k < 10_000) {
 // Do network calls here
 k++
 }
}

// Elsewhere in your app
// Has to wait until
// 10_000 iterations
poorJob.cancel()
poorJob.join()

// Cooperative coroutine
val betterJob = runBlocking {
 var k = 0
 while (k < 10_000 && isActive) {
 // Do network calls here
 k++
 }
 repeat(10_000) {
 yield()
 // Do network calls here
 }
}

// Elsewhere in your app
// Cancelable at any iteration
betterJob.cancelAndJoin()

Both isActive and yield() are
Kotlin builtin prop/function

77

http://www.youtube.com/watch?v=ZTDXo0-SKuU

